화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.6, 858-867, December, 1993
티타늄지지체에 β-PbO2의 전착 및 성능에 관한 Cyclic Voltammograms
Cyclic Voltammograms for the Electrodeposion of β-PbO2 on the Titanium Substrate and it's Performances
초록
티타늄지지체상에 산소과전압이 크고 소모성이 적은 β-PbO2의 전착에 대한 기초연구로서 최적 전착조건과 전극특성을 cyclic voltammograms에 의하여 검토하였다. 전착조건이 1.0M Pb(NO3)2, pH2.2-3.0, 60℃, 양극전위가 1.50-1.65V vs. SCE일 경우 최적임을 알았다. PbO2 전착반응은 반응속도가 증가할수록 결정크기가 커지고 산소과전압이 높아지는 확산지배인 반응이었다. 본 실험에 사용한 산과 유기첨가제들중 HCIO4 지지전해질에 sodium lauryl sulfate를 첨가할 때 산소과전압이 가장 높은 PbO2가 전착되었다. 위와 같은 최적 전착조건에서 티타뉴마드래스에 전착시킨 이산화납전극을 염소산나트륨으로부터 과염소산나트륨 전해제조에 활용하여 전극성능과 내구성을 검토하였다. HCIO4 지지전해질에 sodium lauryl sulfate를 첨가하여 전착한 PbO2 전극이 가장 높은 전류효ㅇ과 내구성을 가짐을 확인하였다.
As a basic study on the electrodeposition of PbO2 with high oxygen overvoltage and less comsump-tion on a titanim substrate, the optimal electrodeposition conditions and electrode characteristics were inves-tigated by cyclic voltammograms. It was observed that the electrodeposition condition was optimal at 1.0M Pb(NO3)2, pH2.2-3.0, 60℃, and anode potential, 1.50-1.65V vs. SCE. The PbO2 electrodeposition reaction was the diffusion controlled reaction that the fast the electrodeposition rate, the larger the grains size and the higher the oxygen overvoltage. Among various acids and organic additives used in this experiment, PbO2 with a high oxygen overvoltage was electrodeposited when sodium lauryl sulfate was added in HClO4 support-ing electrolyte. Electrode performance and durability for the electrolytic preparation of sodium perchlorate from sodium chlorate with using lead dioxide electrodes electrodeposited on a titanium madras at above optimal electrodeposition conditions have been investigated. It was ascertained that the PbO2 electrode elec-trodeposited by adding sodium lauryl sulfate in HClO4 supporting electrolyte have the highest current efficiency and durability.
  1. Beer H, U.S. Patent, 3,711,385 (1973)
  2. Beer H, U.S. Patent, 3,622,498 (1973)
  3. Chang H, Johnson DC, J. Electrochem. Soc., 136, 17 (1989) 
  4. Carr JP, Hampson NA, Chem. Rev., 72, 679 (1972) 
  5. Munichandraiach N, Sathyanarayana S, J. Electrochem. Soc., 18, 314 (1988) 
  6. Fukasana A, Japan Kokai JP 52-19230[77/19230], pp. 4 (Feb. 14) (1977)
  7. Hampel CA, "Encyclopedia of Electrochemistry," pp. 762, Reinhold, New York (1981)
  8. Gabe DR, "Principle of Metal Surface Treatment and Protection," 2nd, pp. 66, Pergamon Press, Inc., Elmsford, NY (1978)
  9. Pavlov D, Balkanov I, J. Electrochem. Soc., 139, 3077 (1987)
  10. Narasimham KC, Sundararajan S, Udupa HVK, J. Electrochem. Soc., 108, 798 (1961)
  11. Shimada T, Iizaka M, Ito Y, Denki Kagaku, 60, 207 (1992)
  12. Bard AJ, Faulkner LR, "Electrochemical Method," chap. 6, pp. 215-223, John Wiley, New York (1980)
  13. Beck F, Bohn H, Ber. Bunsenges. Phys. Chem., 79, 233 (1975)
  14. Nielsen BS, Davis JL, Thiel PA, J. Electrochem. Soc., 137, 1017 (1990)