화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.1, 114-120, February, 2002
순환 유동상 생물막 반응기를 이용한 고농도 암모니아 폐수의 질산화에서의 아질산 축적 특성
Nitrite Accumulation Characteristics in the Nitrification of High Strength Ammonia Wastewater with Biofilm Airlift Suspension Reactor
E-mail:
초록
고농도 암노니아성 질소의 경제적인 제거를 위하여 순환 유동상 반응기를 이용한 선택적 질산화를 수행하였다. 반응기 내에서 모래 담체 표면에 고농도로 부착 성장한 생물막은 최대 15 g/L의 농도까지 유지되었다. 운전기간 동안 암모니아성 질소 부하 2.5 kg NH4+-N/m(3)/d에서 90% 이상의 질산화율을 보였으며 처리수의 산화질소 중 아질산성 질소가 90% 이상을 차지하여 성공적으로 선택적 질산화가 수행되었다. 순환 유동상 생물막 반응기 운전 전 기간동안 아질산 산화균이 free ammonia와 용존 산소 농도의 저해에 의해 아질산성 질소가 질산성 질소로 전환되지 못했다. 회분 실험으로 반응기 내의 아질산 산화균의 활성을 확인해 본 결과 특히 free ammonia가 존재할 때 저해를 받았으며 이것이 아질산성 질소 축적의 주요 원인으로 판단된다.
Selective nitrifications of high strength ammonia wastewater was performed with biofilm airlift suspension reactor for the economical removal of nitrogen via nitrite. Biofilms were successfully attached on the surface of the carriers(sand) and the biomass concentration reached up to 15 g/L with the reactor. During the experiment more than 90% nitrification was obtained at 2.5 kg NH4 +-N/m(3)/d and selective nitrification was successfully carried out to have more than 90% nitrite accumulation of the total oxidized nitrogen. Nitrite accumulation was achieved by the inhibitions on nitrite oxidizers with free ammonia and low dissolved oxygen in the biofilm airlift suspension reactor. From the batch nitrification analysis it was shown that the existence of free ammonia is the main cause of nitrite accumulation.
  1. Stefan J, Gabriele T, Markus S, Karl-Heinz S, Andreas PR, Hans-Peter K, Michael W, Appl. Environ. Microbiol., 64, 3042 (1998)
  2. Painter HA, Loveless JE, Water Res., 17, 237 (1983) 
  3. Keen GA, Prosser JI, Arch. Microbial., 147, 73 (1987) 
  4. Groenewg J. Sellner B, Tappe W, Water Res., 28, 2561 (1994) 
  5. EPA, "Manual: Nitrogen Control," EPA/625/R93/010 (1993)
  6. Abelling U, Seyfried CF, Water Sci. Technol., 28, 165 (1993)
  7. Munch EV, Lant P, Keller J, Water Res., 30, 277 (1996) 
  8. Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168 (1997) 
  9. Fdz-Polanco F, Villaverde S, Garcia PA, Water Sci. Technol., 31, 121 (1994) 
  10. Turk O, Mavinic DS, JWPCF, 61, 1440 (1989)
  11. Sheng-Kun C, Chin-Kun J, Sheng-Shung C, Water Sci. Technol., 23, 1417 (1991)
  12. Joo SH, Kim DJ, Yoo IK, Park K, Cha GC, Biotechnol. Lett., 22(11), 937 (2000) 
  13. Wiesmann U, Adv. Biochem. Eng. Biotechnol., 51, 113 (1994)
  14. Villaverde S, Fdz-Polanco F, Garcia PA, Water Res., 34, 602 (1998) 
  15. Villaverde S, Garcia-Encin P, Turk O, Mavinic D, Water Res., 23, 1383 (1989) 
  16. Joeseph A, Water Sci. Technol., 30, 297 (1994)
  17. Ryhiner G, Water Sci. Technol., 29, 111 (1994)
  18. Yoo IK, Kim GH, Kim DJ, HWAHAK KONGHAK, 36(6), 945 (1998)
  19. Tschui M, Water Sci. Technol., 29, 53 (1994)
  20. Cecen F, Gonenc I, Water Sci. Technol., 29, 409 (1994)
  21. Lee SC, Kim DJ, HWAHAK KONGHAK, 39(1), 123 (2001)
  22. Tijhuis L, Huisman JL, Hekkelman HD, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 47(5), 585 (1995) 
  23. APHA, Standard Methods for the Examination of Water and Wastewater, 18th ed., Washington D.C. (1992)
  24. Wolfe RL, Lieu NI, Izaguirre G, Means EG, Appl. Environ. Microbiol., 56, 451 (1990)
  25. Eberhard B, Ingo S, Ralf S, Dirk Z, Arch. Microbiol., 163, 16 (1995)
  26. Ford DL, J. Wat. Pullut. Control. Fed., 52, 2726 (1980)
  27. Villaverde S, Fdz-Polanco F, Garcia PA, Water Res., 34, 602 (2000) 
  28. Kuai L, Verstraete W, Appl. Environ. Microbiol., 64, 4500 (1998)
  29. Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG, J. WPEF, 48, 835 (1976)