화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.2, 253-259, March, 2002
광도파로용 Fluorinated Poly(maleimide-co-methacrylate)s 의 합성과 특성
Synthesis and Characterization of Fluorinated Poly(maleimide-co-methacrylate)s for Optical Waveguiding Materials
E-mail:
초록
본 연구는 내열성, 저광학손실 광도파로용 고분자재료를 합성하고 그 물성을 조사한 것이다. 열안정성을 높이고 광학손실을 줄이기 위한 pentafluorophenylmaleimide와 복굴절률을 낮추기 위한 두가지 methacrylate 유도체와 가교제 역할을 하는 glycidylmethacrylate를 삼원 공중합하여 광가교가 가능한 poly(maleimide-co-methacrylate)를 합성하였다. 합성된 고분자들은 높은 열안정성을 나타내었고, 열처리에 의해서 가교가 됨을 확인하였다. 고분자의 굴절율은 공중합 비율에 의해서 조절가능하였고, 1.45∼1.49 범위의 고분자가 합성되었다. 복굴절은 6×10(-4)∼<1×10(-4) 범위의 낮은 값을 나타내었다. 이 고분자와 광개시제를 사용하여 접촉 인쇄 방식에 의한 노광과 습식현상을 통해 깨끗한 광도파로 패턴을 얻을 수 있었다.
The objective of this study is to obtain thermally stable and low optical loss polymers for optical waveguiding materials. The crosslinkable poly(maleimide-co-methacrylate)s were synthesized using a pentafluorophenylmaleimide (an optical loss reducer), two methacrylate derivatives (refractive index controllers), and a glycidylmethacrylate (a crosslinker). These copolymers exhibited good thermal stability and could be thermally crosslinked by heat treatment. The refractive indexes of the copolymers could be precisely controlled by the variation of comonomer feed ratio, which was in the range of 1.45∼1.49. These copolymers had very low birefringence of 6×10(-4)∼<1×10(-4). These copolymers were crosslinked by contact printing and then developed by wet etching to obtain high quality waveguide pattern.
  1. Renaud M, Bachmann M, Erman M, IEEE J. Selected Topics in Quant. Electronics., 2(2), 277 (1996) 
  2. Pennings E, Khoe GD, Smit MK, Staring T, IEEE J. Selected Topics in Quant. Electronics, 2(2), 151 (1996) 
  3. Oh MC, Lee HJ, Lee M, Lee H, Ahn JH< Han SG, Kim HG, Appl. Phys. Lett., 73(18), 2543 (1998) 
  4. Li YP, Henry CH, IEEE Proc-Optoelectron, 143(5), 263 (1996) 
  5. Tacato N, Jinguji K, Yasu M, Toba H, Kawachi M, IEEE J. Lightwave Technol., 6(6), 1003 (1988) 
  6. Imamura S, Yoshimura R, Izawa T, Electron. Lett., 27(15), 1342 (1991)
  7. Yoshimura R, Hikita M, Tomsru S, Imamura S, IEEE J. Lightwave Technol., 16(6), 1030 (1998) 
  8. Kagami M, Ito H, Ichigawa T, Kato S, Matsuda M, Takahashi N, Appl. Opt., 34(6), 1041 (1995)
  9. Usui M, Imamura S, Sugawara S, Hayashida S, Sato H, Hikita M, Izawa T, Electronics Lett., 30(12), 958 (1994) 
  10. Usui M, Hikita M, Watanabe T, Amano M, Sugawara S, Hayashida S, Imamura S, J. Lightwave Tech., 14(10), 2338 (1996) 
  11. Han KS, Kim DB, Jang WH, Rhee TH, Jpn. J. Appl. Phys., 38, 1249 (1999) 
  12. Ando S, Matsuura T, Sasaki S, Chemtech., December, 20 (1994)
  13. Fischbeck G, Moosburger R, Kostrzewa C, Achen A, Petermann K, Electronics Lett., 33(6), 518 (1997) 
  14. Lee HJ, Lee EM, Lee MH, Oh MC, Ahn JH, Han SG, Kim HG, J. Polym. Sci. A: Polym. Chem., 36(16), 2881 (1998) 
  15. Han KS, Suh DH, Rhee TH, Polym. Bull., 41(4), 455 (1998) 
  16. Park KH, Lim JT, Song S, Kwak MG, Lee CJ, Kim N, React. Funct. Polym., 40(2), 169 (1999) 
  17. Park KH, Kwak MG, Jahng WS, Lee CJ, Kim N, React. Funct. Polym., 40(1), 41 (1999) 
  18. Kobayshi J, Matsuura T, Sasaki S, Maruno T, Appl. Optics, 37(6), 1032 (1998)