화학공학소재연구정보센터
Macromolecular Research, Vol.10, No.2, 97-102, April, 2002
Zirconocene-catalyzed Copolymerizations of Ethylene with 5-Methyl-1,4-hexadiene as Non-conjugated Diene
E-mail:
The mixtures of non-conjugated dienes, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene (MHD), were successfully synthesized by the reaction of isoprene with ethylene using Fe(III)-based catalyst in toluene. The conversion was over 96 mol% on the basis of the initial amount of isoprene used. The production yield for MHD was nearly 50 mol%, the other was polyisoprene. The mixtures were successfully copolymerized with ethylene by using zirconium-based metallocenes. The products were characterized by the combinations of gas chromatography, high temperature gel permeation chromatography, 1H NMR, 13C NMR, high temperature 1H NMR, UV/Visible spectroscopy, and differential scanning calorimetry. It was found that 5-methyl-1,4-hexadiene was active enough to be incorporated into the copolymer chain but the corresponding isomeric material, 4-methyl-1,4-hexadiene, was inactive in metallocene-catalyzed copolymerizations. Specifically, in the zirconocene-catalyzed copolymerizations of ethylene with MHD, ansa-structure catalysts seem to be more efficient than non-bridged type zirconocene. The degree of incorporation of MHD in the resulting copolymers was able to be controlled by the amount of non-conjugated dienes used initially.
  1. Sinn H, Kaminsky W, Adv. Organomet. Chem., 18, 99 (1980)
  2. Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM, Angew. Chem.-Int. Edit., 34, 1143 (1995) 
  3. Kaminsky W, Macromol. Chem. Phys., 197, 3907 (1996) 
  4. Barnhart RW, Bazan GC, Mourey T, J. Am. Chem. Soc., 120(5), 1082 (1998) 
  5. Resconi L, Piemontesi F, Camurati I, Sudmeijer O, Nifant'ev IE, Ivchenko PV, Kuz'mina LG, J. Am. Chem. Soc., 120(10), 2308 (1998) 
  6. Ishihara N, Kuramoto M, Uoi M, Macromolecules, 21, 3356 (1988) 
  7. Duncalf DJ, Wade HJ, Waterson C, Derrick PJ, Haddleton DM, Mccamley A, Macromolecules, 29(20), 6399 (1996) 
  8. Li YF, Ward DG, Reddy SS, Collins S, Macromolecules, 30(7), 1875 (1997) 
  9. Zambelli A, Oliva L, Pellecchia C, Macromol. Theory Simul., 22, 2129 (1989)
  10. Kim J, Kim KH, Jin YH, Ryu H, Kwak S, Kim KU, Hwang SS, Jo WH, Jho JY, Korea Polym. J., 8(1), 44 (2000)
  11. Collins S, Kelly WM, Macromolecules, 25, 233 (1992) 
  12. Kelly WM, Wang ST, Collins S, Macromolecules, 30(11), 3151 (1997) 
  13. Arndt M, Kaminsky W, Macromol. Symp., 95, 167 (1995)
  14. Kravchenko R, Masood A, Waymouth RM, Myers CL, J. Am. Chem. Soc., 120(9), 2039 (1998) 
  15. Shapiro PJ, Cotter WD, Schaefer WP, Labinger JA, Bercaw JE, J. Am. Chem. Soc., 114, 4623 (1994) 
  16. Schwank D, Modern Plast. Int., Aug., 33 (1993)
  17. Lee DH, Noh SK, Korea Polym. J., 9(2), 71 (2001)
  18. Gal YS, Lee WC, Jin SH, Lee HJ, Korea Polym. J., 8(5), 231 (2000)
  19. Kim J, Kim KH, Kwak S, Kim KU, Polym. Sci. Technol., 9(1), 17 (1998)
  20. De Roover B, Sclavons M, Carlier V, Devaux J, Legras R, Momtaz A, J. Polym. Sci. A: Polym. Chem., 33(5), 829 (1995) 
  21. Chung TC, Macromolecules, 21, 865 (1988) 
  22. Stehling UM, Malmstrom EE, Waymouth RM, Hawker CJ, Macromolecules, 31(13), 4396 (1998) 
  23. Naga N, Shiono T, Ikeda T, Macromolecules, 32(5), 1348 (1999)
  24. Bryson JG, U.S. Patent, 3,904,704 (1975)
  25. Hata G, J. Am. Chem. Soc., 64, 3903 (1964)
  26. Coevoet D, Cramail H, Deffieux A, Macromol. Chem. Phys., 199, 1451 (1998)
  27. Pedeutour JN, Coevoet D, Cramail H, Deffieux A, Macromol. Chem. Phys., 200, 1215 (1999)