- Previous Article
- Next Article
- Table of Contents
Chemical Engineering Science, Vol.57, No.4, 535-546, 2002
State multiplicity in CSTR-separator-recycle polymerisation systems
This article continues earlier work (Comput. Chem. Eng. 24 (2000) 209) concerning the design and control of isothermal reactor-separator-recycle systems. The multiplicity behaviour of six reaction systems of increasing complexity, from one-reactant, first-order reaction to chain-growth polymerisation, is investigated. Below a critical value of the plant Damkohler number, Da < Da(cr), the only steady state involves infinite flow rates. Feasible steady states become possible if the critical value is exceeded, Da > Da(cr). For one-reaction systems, one stable steady state is born at a transcritical bifurcation. For consecutive-reaction systems, including polymerisation, a fold bifurcation can lead to two feasible steady states. Moreover, the transcritical bifurcation is destroyed when two reactants are involved. If the gel-effect is included, a maximum of four steady states are possible. When multiple steady states exist, the achievable conversion is constrained by the instability of the low-conversion branch. This has practical importance for polymerisation systems when the radicals' quasi-steady state assumption is not valid or the gel effect is significant.