화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.41, No.7, 1733-1744, 2002
Modeling continuous vinyl acetate emulsion polymerization reactions in a pulsed sieve plate column
A dynamic mathematical model is developed to simulate emulsion polymerization reactions carried out in a new type of reactor, the pulsed sieve plate column (PSPC). The PSPC is described by an axial dispersion model that allows one to cover the entire range between plug flow and perfectly mixed stirred tank reactors and, therefore, enables the simulation of a wide range of operational conditions. The developed model was validated with experimental data of vinyl acetate emulsion polymerization reactions. Besides presentation of a good agreement with experimental data at reactor start-up and,at steady-state conditions, simulation results also showed that, at the studied operational conditions, the homogeneous nucleation mechanism is very important in order to represent the polymer particle number increase observed experimentally along the reactor length. The developed model was also used to test different start-up procedures and reaction temperatures.