Polymer(Korea), Vol.26, No.3, 367-374, May, 2002
PTCR 나노 복합기능 소재의 전류 차단 특성 연구
PTCR Characteristics of Multifunctional Polymeric Nano Composites
E-mail:
초록
본 연구에서는 나노 입자의 카본블랙을 결정성 고분자에 분산시켜 특정한 온도에서 저항이 급격하게 증가하는 positive temperature coefficient resistance (PTCR) 특성을 연구하였다. 열가소성 수지를 이용한 PTCR 소재를 열처리에 의하여 고분자의 큐리온도를 조절할 수 있었다. 나노 입자 카본블랙이 고분자 구조내에 고르게 분산이 되지 않고, 카본블랙의 함량이 과다하면 negative temperature coefficient resistance (NTCR) 현상이 발생하였다. 카본블랙의 함량과 내부전압을 조절함에 따라 발열 온도를 선정할 수 있었다. 카본블랙의 함량에 따라 전기 전도성이 다르게 나타났으며, 20 wt% 이상에서는 저항이 거의 일정하게 나타난다는 것을 확인하였다. 본 연구에서 제조된 PTCR 소재는 반복적인 가열 냉각에 따른 상온에서의 초기 저항의 변화가 거의 없어 재현성을 확인하였으며, 초기의 낮은 저항에 의한 순간적인 발열에 의하여 저온에서의 PTCR 성능이 향상되었다.
Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.
Keywords:positive temperature coefficient resistance (PTCR);conducting polymer;thermoplastic polymer;nano-sized carbon black;electrical resistance
- Supancic P, J. Eur. Ceram. Soc., 20, 2009 (2000)
- Strumpler R, Maidorn G, Rhyner J, J. Appl. Phys., 81, 6786 (1997)
- Huang ZZ, Yue R, Chan HLW, Choy CL, Polym. Compos., 19, 781 (1998)
- Yi XS, Wu G, Ma D, J. Appl. Polym. Sci., 67(1), 131 (1998)
- Chu EF, Thein NH, U.S. Patent, 5,580,493 (1996)
- Meyer J, Polym. Eng. Sci., 13, 462 (1973)
- Hongawa K, Kawai T, Yokoyama A, International Symposiumof Carbon, C10-07, p. 172, Tokyo (1998)
- Xi BF, Chen K, Liu FY, Xu CX, Zhang QY, Asian International Conference on Dielectrics and Electrical Insulation and the 30th Symposium on Electrical Insulating Materials, Toyohashi, Japan, Sept., 27 (1998)
- Strumpler R, Skindhoj J, Glatz-Reichenbach J, Kuhlrfelt JHW, Perdoncin F, Trans. Power Delivery, 14, 425 (1999)
- Lee SJ, Nam JD, Suh SJ, Yoon JW, Korea Patent, 10-2001-0027981 (2001)
- Lee SJ, Nam JD, Suh SJ, Korea Patent, 20-2001-0011056 (2001)
- Hall TJ, U.S. Patent, 6,059,997 (2000)
- Breuer O, Tchoudakov R, Narkis M, Siegmann A, J. Appl. Polym. Sci., 73(9), 1655 (1999)
- Cung KT, Sabo A, Pica AP, J. Appl. Phys., 53, 6867 (1982)
- Liu YW, Oshima K, Yamauchi T, Shimomura M, Miyauchi S, Synth. Met., 101, 451 (1999)
- Feng JY, Chan CM, Polymer, 41(19), 7279 (2000)
- Hindermann-Bischoff M, Ehrburger-Dolle F, Carbon, 39, 375 (2001)
- Ford RD, Vitkovitsky IM, Transaction on Electrical Insulating, EI-20, 29 (1985)
- Feng JY, Chan CM, Polymer, 41(12), 4559 (2000)
- Wang DJ, Qiu J, Gui ZL, Li LT, J. Mater. Res., 14, 2993 (1999)
- Wang DJ, Qiu J, Guo YC, Gui ZL, Li LT, J. Mater. Res., 14, 120 (1999)
- Feingold AH, Amstutz P, Wahlers RL, Huang C, Stein SJ, IEMT/IME Proceeding, 138 (1998)
- Chatterjee S, Maiti HS, Mater. Chem. Phys., 67, 294 (2001)
- Xu WL, Tso SK, Tso Y, Trans. Ind. Electronics, 47, 454 (2000)
- Brogly M, Nardin M, Schultz J, J. Appl. Polym. Sci., 64(10), 1903 (1997)
- Hyundai Motor Company Standard Specification, "Out-Side Rear View Mirror Heater Specification," ES 87602 (1994)