Polymer(Korea), Vol.26, No.3, 381-388, May, 2002
유기화 점토를 이용한 폴리우레탄 나노 복합재료
Polyurethane Nanocomposites with Organoclay
E-mail:
초록
폴리우레탄을 이용한 나노 복합재료의 열적, 기계적 성질, 모폴로지, 그리고 기체 투과 정도를 유기화 점토의 함량에 따라 조사 후 비교하였다. 유기화 점토는 헥사데실아민-몬모릴로나이트 (C16-MMT)를 사용하였으며, 매트릭스 고분자인 폴리우레탄에 대해 1-4 wt%로 각각 분산시키면서 물성을 조사하였다. 유기화 점토가 일정한 wt%에서 일부는 뭉쳤지만 대부분은 매트릭스 고분자에 고루 분산됨을 전자현미경으로부터 알 수 있었고, 열적 성질 및 기계적 성질은 분산도에 따라 증가함을 알 수 있었다. 기체 투과도는 유기화 점토 양의 증가에 따라 현저히 감소함을 보여주었다. 본 연구로부터, 소량의 유기화 점토 (<5 wt%)를 분산시킨 나노 복합재료는 순수한 폴리우레탄 보다 열적, 기계적 성질 및 기체 투과 방지에 좋은 효과가 있음을 알았다.
The properties of polyurethane (PU) nanocomposites with organoclay have been compared in terms of their thermo-mechanical properties, morphology, and gas permeability. Hexadecylamine-montmorillonite (C16-MMT) was used as an organoclay to make PU hybrid
films. The properties were investigated as a function of organoclay content (1-4 wt%) in the PU matrix. Transmission electron microscopy (TEM) photographs showed that most clay layers were dispersed homogeneously into the matrix polymer in nano-scale, although some particles of clay were agglomerated. We also found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films while gas permeability was reduced. Even at low organoclay content (<5 wt%), the PU nanocomposite showed much better thermo-mechanical properties, and lower gas permeability than pure PU.
Keywords:polyurethane nanocomposites;organoclay;thermo-mechanical properties;morphology;gas permeability
- Woods G, "The ICI Polyurethane Book," Chapter 1, UK, Wiley (1990)
- Comstock MJ, "Urethane Chemistry and Applications," ACS Symposium Series, Vol. 172, Chapter 1 (1981)
- Fabris HJ, "Advances in Urethane Science and Technology," Technomic Publishing Co, New York (1976)
-
Zuo M, Takeichi T, Polymer, 40(18), 5153 (1999)
- Masiulanis B, Zielinski RJ, J. Appl. Polym. Sci., 30, 2731 (1985)
-
Liao DC, Hsieh KH, J. Polym. Sci. A: Polym. Chem., 32(9), 1665 (1994)
- Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3769 (1998)
-
Tien YI, Wei KH, Polymer, 42(7), 3213 (2001)
-
Zilg C, Thomann R, Mulhaupt R, Pinter J, Adv. Mater., 11, 49 (1999)
-
Giannelis EP, Adv. Mater., 8, 29 (1996)
-
Yang Y, Zhu ZK, Yin J, Wang XY, Qi ZE, Polymer, 40(15), 4407 (1999)
-
Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)
-
Hsiao SH, Liou GS, Chang LM, J. Appl. Polym. Sci., 80(11), 2067 (2001)
- Zilig C, Mulhaupt R, Finter J, Macromol. Chem. Phys., 200, 661 (1999)
-
Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
- Wen J, Wikes GL, Chem. Mater., 8, 1667 (1996)
- Fischer HR, Gielgens LH, Koster TPM, Acta. Polym., 50, 122 (1999)
- Carrado KA, Xu L, Chem. Mater., 10, 1440 (1998)
-
Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
-
Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN, J. Appl. Polym. Sci., 73(11), 2063 (1999)
-
Chang JH, Park DK, Ihn KJ, J. Polym. Sci. B: Polym. Phys., 39(5), 471 (2001)
-
Chang JH, Park KM, Cho DH, Yang HS, Ihn KJ, Polym. Eng. Sci., 41(9), 1514 (2001)
-
Zoppi RA, das Neves S, Nunes SP, Polymer, 41(14), 5461 (2000)