화학공학소재연구정보센터
Macromolecular Research, Vol.10, No.3, 150-157, June, 2002
Effect of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Surface with Different Wettability on Fibroblast Behavior
E-mail:
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity, due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [3H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettability of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.
  1. Gogolewski S, Jovanoic M, Perren SM, Dillon JG, Hughes MK, J. Biomed. Mater. Res., 27, 1135 (1993) 
  2. Akhtar S, Pouton CW, Drug News Perspectives, 2, 89 (1989)
  3. Juni K, Nakano M, CRC Crit. Rev. Therap. Drug Carrier Syst., 3, 209 (1987)
  4. Lee SJ, Khang G, Lee JH, Lee YM, Lee HB, Polym.(Korea), 24(6), 877 (2000)
  5. Khang G, Lee SJ, Jeon JH, Lee JH, Lee HB, Polym.(Korea), 24(6), 869 (2000)
  6. Khang G, Lee SJ, Lee JH, Lee HB, Korea Polym. J., 7(2), 102 (1999)
  7. Schakenraad JM, Busscher HJ, Wildevuur CHR, Arends J, J. Biomed. Mater. Res., 20, 773 (1986) 
  8. Van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, Van Aken WG, Biomaterials, 6, 403 (1985) 
  9. Tamada Y, Ikada Y, J. Colloid Interface Sci., 155, 334 (1993) 
  10. Van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, Van Aken WG, Biomaterials, 8, 323 (1987) 
  11. Gregonis DE, Hsu R, Buerger DE, Smith LM, Andrade JD, Macromolecular Solutions, R.B. Seymoor and D.A. Stahl, Eds., Pergamon, New York, pp 120 (1982)
  12. Coleman DL, Gregonis DE, Andrade JD, J. Biomed. Mater. Res., 16, 381 (1982) 
  13. Horbett TA, Schway MB, Ratner BD, J. Colloid Interface Sci., 104, 28 (1985) 
  14. Walker DL, Gregonis MD, Richert WM, J. Colloid Interface Sci., 157, 41 (1993) 
  15. Lydon MJ, Minett TW, Tighe BJ, Biomaterials, 6, 396 (1985) 
  16. Lee JH, Kim H, Khang G, Lee HB, Jhon MS, J. Colloid Interface Sci., 152, 563 (1992) 
  17. Lee HB, Lee JH, Biocompatibility of Solid Substrates Based on Surface Wettability, in Encyclopedic Handbook of Biomaterials and Bioengineering: Part A. Materials, D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser, and E.R. Schwartz, Eds., Marcel Dekker, New York, Vol. 1, pp. 371-398 (1995)
  18. Lee JH, Lee HB, J. Biomater. Sci.-Polym. Ed., 4, 467 (1993)
  19. Jeong BJ, Lee JH, Lee HB, J. Colloid Interface Sci., 178(2), 757 (1996) 
  20. Lee JH, Jeong BJ, Lee HB, J. Biomed. Mater. Res., 34, 105 (1997) 
  21. Lee JH, Khang G, Lee JW, Lee HB, Makromol. Chem. Macromol. Symp., 118, 571 (1997)
  22. Khang G, Lee JW, Jeon JH, Lee JH, Lee HB, Biomaterials Res., 1, 1 (1997)
  23. Lee Jh, Lee JW, Khang G, Lee HB, Biomaterials, 18, 351 (1997) 
  24. Lee JH, Lee HB, J. Biomed. Mater. Res., 41, 304 (1998) 
  25. Lee JH, Khang G, Lee JW, Lee HB, J. Biomed. Mater. Res., 40, 180 (1998) 
  26. Iwasaki Y, ishihara K, Nakabayashi N, Khang G, Jeon JH, Lee JW, Lee HB, J. Biomater. Sci.-Polym. Ed., 9, 801 (1998)
  27. Lee JH, Khang G, Lee JW, Lee HB, J. Colloid Interface Sci., 205(2), 323 (1998) 
  28. Khang G, Jeon JH, Cho JC, Rhee JM, Lee HB, Polym.(Korea), 23(6), 861 (1999)
  29. Khang G, Lee SJ, Jeon JH, Lee JH, Lee HB, Polym.(Korea), 24(6), 869 (2000)
  30. Khang G, Park CS, Rhee JM, Lee SJ, Lee YM, Choi MK, Lee HB, Lee I, Korea Polym. J., 9(5), 267 (2001)
  31. Khang G, Choee JH, Rhee JM, Lee HB, J. Appl. Polym. Sci., in press (2001)
  32. Lee JH, Lee SK, Khang G, Lee HB, J. Colloid Interface Sci., 230(1), 84 (2000) 
  33. Lee JH, Jung HW, Kang IK, Lee HB, Biomaterials, 15, 705 (1994) 
  34. van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG, Biomaterials, 6, 403 (1985) 
  35. van Wachem PB, Hogt AH, Beugeling T, Biomaterials, 8, 323 (1987) 
  36. Tamada Y, Ikada Y, Polymers in Medicine II, E. Cheillin, P. Giusti, C. Migliaresl, and L. Nicolas, Eds., Plenum Press, New York, pp 101 (1986)
  37. Tamada Y, Ikada Y, J. Colloid Interface Sci., 155, 334 (1993) 
  38. Tamada Y, Ikada Y, J. Biomed. Mater. Res., 28, 783 (1994) 
  39. Khang G, Rhee JM, Lee JH, Lee I, Lee HB, Korea Polym. J., 8(6), 276 (2000)
  40. Khang G, Lee SJ, Lee YM, Lee JH, Lee HB, Korea Polym. J., 8(4), 179 (2000)
  41. Lee JH, Kim DK, Khang G, Lee JS, Biomaterials, 2, 8 (1998)