Polymer(Korea), Vol.26, No.4, 501-507, July, 2002
Diglycidylether of Bisphenol-S 에폭시 수지의 합성 및 경화거동에 관한 연구
Synthesis and Cure Behaviors of Diglycidylether of Bisphenol-S Epoxy Resins
E-mail:
초록
본 논문에서는 bisphenol-S (BPS)와 epichlorohydrin (ECH)를 NaOH의 촉매하에서 중합시켜 diglycidylether of bisphenol-S (DGEBS) 에폭시 수지를 합성하였다. IR, NMR spectra 분석, 그리고 원소분석에 의해 합성한 DGEBS 에폭시 수지의 화학구조를 확인하였다. 산무수화물계 phthalic anhydride (PA)와 tetrahydrophthalic anhydride (THPA)를 경화제로 사용하여 DSC에 의한 열분석을 통하여 DGEBS 에폭시 수지의 경화 동력학과 유리전이온도 (Tg)를 고찰하였으며, TGA 열분석을 사용하여 경화된 시편의 열안정성을 측정하였다. 실험 결과 DGEBS/PA계의 경화 활성화 에너지 (Ea)는 DGEBS/THPA계보다 높았지만 Tg, 열분해 개시온도 (IDT), 그리고 분해 활성화 에너지 (Et)는 DGEBS/THPA계보다 낮았다. 이는 경화제의 ring strain에 의하여 DGEBS/THPA계의 가교 밀도가 증가하였기 때문인 것으로 사료된다.
In this work, diglycidylether of bisphenol-S (DGEBS) epoxy resin was prepared by alkaline condensation of bisphenol-S (BPS) with epichlorohydrin (ECH) in the presence of NaOH catalyst. The structure of the synthesized DGEBS epoxy resin was confirmed by IR, NMR spectra, and elemental analysis. The curing reaction and glass transition temperature (Tg) of DGEBS epoxy resin cured with phthalic anhydride (PA) and tetrahydrophthalic anhydride (THPA) as curing agents were studied by dynamic differential scanning calorimetry (DSC). The thermal stability of the cured specimen was investigated by thermogravimetric analysis (TGA). As a result, the activation energy (Ea) of DGEBS/PA system was higher than that of DGEBS/THPA system, whereas Tg, initial decomposed temperature (IDT), and decomposition activation energy (Et) of DGEBS/PA were lower than those of DGEBS/THPA. This was probably due to the fact that the crosslinking density of DGEBS/THPA was increased by ring strain of curing agent.
- Bauer RS, "Epoxy Resin Chemistry," Advanced in Chemistry Series, No. 114, American Chemical Society, Washington D.C. (1979)
- Park SJ, Kim HC, Lee HI, Suh DH, Macromolecules, 34(22), 7573 (2001)
- Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001)
- Liaw DJ, Shen WC, Angew. Makromol. Chem., 199, 171 (1992)
- Kim MR, Kim HS, Park DW, Lee JK, React. Kinet. Catal. Lett., 72, 373 (2001)
- Cheng KC, Yu SY, Chiu WY, Chi U, J. Appl. Polym. Sci., 83(13), 2733 (2002)
- Bhuniya S, Maiti S, Eur. Polym. J., 38, 195 (2002)
- Hsiue GH, Liu YL, Tsiao J, J. Appl. Polym. Sci., 78(1), 1 (2000)
- Hsiue GH, Wang WJ, Chang FC, J. Appl. Polym. Sci., 73(7), 1231 (1999)
- Podzimek S, Sykora V, Horalek J, Svestka S, J. Appl. Polym. Sci., 58(9), 1491 (1995)
- Sykora V, Spacek V, Dobas I, J. Appl. Polym. Sci., 54(10), 1463 (1994)
- Shen SG, Li YF, Gao JG, Sun HW, Int. J. Chem. Kinet., 33, 558 (2001)
- Bansal RK, Agarwal RK, Keshav K, Angew. Makromol. Chem., 117, 211 (1984)
- Parekh JK, Patel RG, Angew. Makromol. Chem., 227, 1 (1995)
- Kissinger HE, J. Res. Nat. Bureau. Stand., 57, 2712 (1956)
- Waters DN, Paddy JL, Anal. Chem., 60, 53 (1988)
- Stevens MP, "Polymer Chemistry," Oxford University Press, New York (1999)
- Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)
- Pielichowski K, Czub P, Pielichowski J, J. Appl. Polym. Sci., 69(3), 451 (1998)
- Gao JG, Li YF, Polym. Int., 49, 1590 (2000)
- Doyle CD, Anal. Chem., 33, 77 (1961)
- Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)