화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.4, 523-534, July, 2002
Hydroxypropyl Cellulose의 Acrylic Acid Ester들을 광가교에 의해 제조한 Cholesteric 겔들의 광학 및 팽윤 성질
Optical and Swelling Properties of Photocrosslinked Cholesteric Gels Based on Acrylic Acid Esters of Hydroxypropyl Cellulose
E-mail:
초록
약 60-130 ℃의 온도범위에서 cholesteric 반사색깔을 나타내는 새로운 히드록시프로필 셀룰로오스 (HPC)와 에스테르화도 (DE)가 1-3 범위의 값을 갖는 HPC의 아크릴산 에스테르들 (ESs)을 제조하였다. 또한 DE가 2 이상인 ESs가 50 ℃에서 나타내는 열방성 cholesteric 상에 UV광을 조사시킴에 의해 광학 pitch (λm)가 전 가시광 파장영역에 존재하는 ES 가교필름들을 제조하였다. 미가교와 가교시료들에 대한 열 및 광학 특성과 아세톤 중에서의 가교필름의 팽윤거동을 검토하였다. HPC 자체와 동일하게 ESs의 λm은 온도가 증가함에 따라 증가하였다. 그러나 동일한 온도에서 나타내는 λm은 ES가 HPC에 비해 크며 ES의 λm은 DE가 증가함에 따라 감소하였다. 가교시료들의 λm의 온도의존성은 ESs에 비해 대단히 약하였다. 또한, ESs는 DE가 증가함에 따라 낮은 액정상에서 등방상의 액체로의 전이온도를 나타내는 것과는 판이하게, 가교물질들은 액체상으로의 전이를 일으키지 않으며 약 210 ℃에서 분해가 일어나는 것으로 나타났다. 가교필름들은 이방성 팽윤을 나타내었으며, 이러한 사실은 ES분자들간에 2차원적인 가교가 우선적으로 일어남을 시사한다.
A new hydroxypropylcellulose (HPC) capable of exhibiting reflection colours in the temperature ranges of about 60-130 ℃ and acrylic acid esters of HPC (ESs) with degree of esterification (DE) ranging from 1 to 3 were synthesized. The crosslinked ES films with the optical pitch (λm) ranging throughout the visible region were also prepared by exposing thermotropic cholesteric phases of ESs with a DE of more than 2 to UV light at 50 ℃. The thermal and optical properties for both the uncrosslinked and crosslinked samples and the swelling behavior of the crosslinked films in acetone were investigated. The λm's of ESs, as well as HPC itself, increased with temperature. However, the λm's of ESs were larger than of HPC at the same temperature and decreased with increasing DE. The temperature dependence of λm of the crosslinked samples was much weaker than that of ESs. Moreover, in contrast with ESs that exhibit a decrease of the isotropization temperature with increase in the DE, the networks were found to decompose at about 210 ℃, giving no transition to an isotropic state. The crosslinked samples exhibited an anisotropic swelling, suggesting that the two-dimensional crosslinking preferentially performs between ES molecules.
  1. Hsu CS, Chen HL, J. Polym. Sci. A: Polym. Chem., 37(21), 3929 (1999) 
  2. Caruso U, Hatfull L, Roviello A, Sirigu A, Polymer, 40(24), 6753 (1999) 
  3. Kurihara S, Sakamoto A, Nonaka T, Macromolecules, 32(9), 3150 (1999) 
  4. Pfaffernoschke M, Rubner J, Springer J, Macromol. Chem. Phys., 199, 2247 (1998)
  5. Disch S, Finkelmann H, Ringsdorf H, Schuhmacher P, Macromolecules, 28(7), 2424 (1995) 
  6. Schultz JW, Bhatt J, Chartoff RP, Pogue RT, Ullett JS, J. Polym. Sci. B: Polym. Phys., 37(11), 1183 (1999) 
  7. Stohr A, Strohriegl P, J. Macromol. Sci., A34(7), 1125 (1997)
  8. Stohr A, Strohriegl P, Macromol. Chem. Phys., 199, 751 (1998) 
  9. Kricheldorf HR, Krawinkel T, Macromol. Chem. Phys., 199, 783 (1998) 
  10. Kishi R, Sisido M, Tazuke S, Macromolecules, 23, 3779 (1990) 
  11. Bhadani SN, Gray DG, Mol. Cryst. Liq. Cryst., 99, 29 (1983)
  12. Suto S, Yoshinaka M, J. Mater. Sci., 8, 4644 (1993) 
  13. Yamagishi TA, Sixou P, Polymer, 36(11), 2315 (1995) 
  14. Suto S, Suzuki K, Polymer, 38(2), 391 (1997) 
  15. SutoS, Kawamoto K, J. Appl. Polym. Sci., 73, 1015 (1999) 
  16. Kim KH, Jeong SY, Ma YD, Polym.(Korea), 25(4), 545 (2001)
  17. Ma YD, Kim KH, Polym.(Korea), 24(3), 418 (2000)
  18. De Vires H, Acta Crystallogr., 4, 219 (1951) 
  19. Jeong SY, Jeong JH, Ma YD, Tsujii Y, Polym.(Korea), 25(2), 279 (2001)
  20. Dong Y, Yuan Q, Wu Y, Wand J, Wand M, Polym. J., 33, 326 (2000) 
  21. Dong YM, Yuan Q, Wu YS, Wang M, J. Appl. Polym. Sci., 76(14), 2057 (2000) 
  22. Dong YM, Yuan Q, Huang Y, J. Polym. Sci. B: Polym. Phys., 38(7), 980 (2000) 
  23. Cowie JMG, Arrighi V, Cameron J, McEwan I, McEwen IJ, Polymer, 42(24), 9657 (2001) 
  24. Rusig I, Godinho MH, Varichon L, Sixou P, Dedier J, Filliatre C, Martins AF, J. Polym. Sci. B: Polym. Phys., 32(11), 1907 (1994) 
  25. Yamagishi TA, Guittard F, Godinho MH, Martins AF, Cambon A, Sixou P, Polym. Bull., 32(1), 47 (1994) 
  26. Guo JX, Gray DG, Macromolecules, 22, 2082 (1989) 
  27. Kurihara S, Ishii M, Nonaka T, Macromolecules, 30(2), 313 (1997) 
  28. Fukuda T, Tsujii Y, Miyamoto T, Macromol. Symp., 99, 257 (1995)
  29. Laivins GV, Sixou P, Gray DG, J. Polym. Sci. B: Polym. Phys., 24, 2779 (1986) 
  30. Mays JW, Macromolecules, 21, 3179 (1988) 
  31. Shibayev YP, Yekayeva YV, Polym. Sci. U.S.S.R., 29, 2914 (1987) 
  32. Wojciechowski P, J. Appl. Polym. Sci., 76(6), 837 (2000) 
  33. Kondo T, Miyamoto T, Polymer, 39(5), 1123 (1998) 
  34. Guo JX, Gray DG, Macromolecules, 22, 2086 (1989) 
  35. Watanabe J, Goto M, Nagase T, Macromolecules, 20, 298 (1987) 
  36. Yamagishi T, Ph.D. Dissertation, Kyoto University (1989)
  37. Shibaev VP, Freidzon YS, Kostromin SG, "Liquid Crystalline and Mesomorphic Polymer," Ed. by V.P. Shibaev and L. Lam, Chap. 3, p. 110, Springer-Verlag, New York (1994)
  38. Ma YD, Polym. Sci. Technol., 8(5), 555 (1997)