화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.85, No.5, 919-928, 2002
Detection of lead ion binding on bifunctional chelating/ion-exchange resins by cross-polarization/magic-angle spinning solid-state nuclear magnetic resonance
Solid-state nuclear magnetic resonance (S-NMR) can reveal much useful information, including conformations, stereoregularity, defect structures, and comonomer sequence. S-NMR is especially useful for revealing microstructural differences that can alter local polymer chains. A series of bifunctional chelating/ ion-exchange resins, containing differing ratios of iminodiacetic acid to acetic acid, were synthesized. Cross-polarization magic-angle spinning (CP/MAS) C-13-NMR was employed to measure conformation changes both before and after the bonding of ligands and lead ion adsorbed on bifunctional chelated/ion-exchange resins in this investigation. From the "C-NMR spectra, as the lead ion was adsorbed by the iminodiacetic acid chelating group, the motion of molecular chain would be inhibited and the resonance peaks of the carboxylate anion at 170 ppm would shift downfield. Compared to the FTIR results, the downfield shift of the resonance peaks indicated that the bonding of carboxylate anion and lead ion adsorbed displayed an ionic trend. Furthermore, the bonding of the carboxylic group and lead ion adsorbed changed from ionic to covalent as the chelating group in bifunctional/ion-exchange resins decreased. The linear relationship between the areas of those resonance peaks and the amount of lead ion adsorbed was obtained from the spectra fitting.