화학공학소재연구정보센터
Journal of Chemical Physics, Vol.116, No.23, 10148-10163, 2002
Spectroscopic determination of the water dimer intermolecular potential-energy surface
Two polarizable six-dimensional water dimer intermolecular potential surfaces have been determined by fitting the distributed multipole ASP (anisotropic site potential) potential form to microwave, terahertz, and midinfrared cavity ringdown (D2O)(2) spectra via a rigorous calculation of the water dimer eigenstates with the PSSH (pseudo-spectral split Hamiltonian) method. The fitted potentials accurately reproduce most ground-state vibration-rotation-tunneling spectra and yield excellent second virial coefficients for both H2O and D2O. The calculated dimer structure and dipole moment are close to those determined from microwave spectroscopy and high level ab initio calculations, except that the O-O distance (2.952 Angstrom) is significantly shorter than the currently accepted experimental value. The dimer binding energy (4.85 kcal/mol) is considerably smaller than the accepted experimental result, but in excellent agreement with recent theoretical results, as are the acceptor switching and donor-acceptor interchange tunneling barriers and the cyclic water trimer and tetramer structures and binding energies.