화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.5, 718-725, October, 1994
밑면으로부터 냉각되는 응고에서 용융액의 대류 불안전성
Convective Instabilities of the Melt during Solidification Cooled from Below
초록
냉각 경계면으로부터 결정층이 성장할 때, 시간이 지남에 따라 고체-액체 계면이 움직이고 용융액의 농도분포가 발전된다. 이러한 Stefan 유형의 응고문제에 대해 전파이론을 적용하여, 대류 불안정성을 수치해법으로 조사하였다. 해석 결과, 응고시의 대류 불안정성을 지배하는 중요한 인자인 무차원 응고율 λ가 큰 경우에는 대류발생 시간이 증가하였다. 농도경계층의 깊이를 길이척도로 갖고 있는 국지적인 임계 Rayleigh 수 Rc 는 λ가 증가함에 따라 감소하였다. λ가 작은 경우에는 Rc는 λ에 따라 민감하게 영향받았으나, λ가 큰 경우에는 그 영향이 작은 것으로 나타났다. 본 이론적인 결과는 기존의 염화암모늄 수용액의 실험결과를 잘 설명하여 주었다.
When a crystal layer grows from the cooling boundary, the solid-liquid interface moves and the concentration profile evolves with time. In this Stefan-type solidification problem, convective instabilities of the melt were analysed numerically by using the propagation theory. It was found that the onset time of compositional convection increased with increasing the non-dimensional growth rateλwhich is an important factor governing the instabilities of the melt during solidification. The local critical Rayleigh number Rc having the length scale of the concentration boundary-layer thickness decreased with increasing λ. For small values of λ, Rc, was strongly dependent upon λ, while for large values of λ, its effect was not significant. The present theoretical results were compared favorably with existing experimental results of aqueous ammonium chloride solution.
  1. Huppert HE, J. Fluid Mech., 212, 209 (1990) 
  2. Glicksman ME, Coriell SR, McFadden GB, Annu. Rev. Fluid Mech., 118, 307 (1986) 
  3. Kurz W, Fisher DJ, "Fundamentals of Solidification," 3rd ed., Trans. Tech. Publications, Switzerland (1984)
  4. Woodruff DP, "The Solid-Liquid Interface," Cambridge University Press, London (1973)
  5. Davis SH, J. Fluid Mech., 212, 241 (1990) 
  6. Jansen R, Sahm PR, Mater. Sci. Eng., 65, 192 (1984)
  7. Ostrach S, J. Fluid Eng., 105, 5 (1983)
  8. Coriell SR, Cordes MR, Boettinger WJ, Sekerka RF, J. Cryst. Growth, 49, 13 (1980) 
  9. Hurle DTJ, Jakeman E, Wheeler AA, J. Cryst. Growth, 58, 163 (1982) 
  10. Chun YH, Choi CK, HWAHAK KONGHAK, 29(3), 381 (1991)
  11. Carslow HS, Jaeger JC, "Conduction of Heat in Solids," 2nd ed., Oxford University Press, London (1959)
  12. Woods AW, J. Fluid Mech., 239, 429 (1992) 
  13. Worster MG, J. Fluid Mech., 167, 481 (1986) 
  14. Smith TJ, "Modelling the Flow and Solidification of Metals," Martinus Nijhoff Publishers, Boston (1987)
  15. Alexiades V, Solomon AD, "Mathematical Modeling of Melting and Freezing Processes," Hemisphere, Washington, D.C. (1993)
  16. Huppert HE, Worster MG, Nature, 314, 703 (1985) 
  17. Tait S, Jaupart C, Nature, 338, 571 (1989) 
  18. Yoo JS, Choi CK, Korean J. Chem. Eng., 4(2), 128 (1987)
  19. Lee JD, Ph.D. Dissertation, Seoul National Univ., Seoul (1989)