화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.6, 792-801, December, 1994
Mg(OEt)2/THF/SiCl4/TiCl4 촉매에 의한 에틸렌의 기상 중합 및 공중합
Gas Phase Homo- and Co-polymerization of Ethylene over Mg(OEt)2/THF/SiCl4/TiCl4 Catalysts
초록
기상 및 슬러리상에서 Mg(OEt)2/THE/SiCl4/TiCl4계 촉매를 사용하여 반응온도는 20-70℃, 반응압력은 2-10psig에서 에틸렌 중합 및 공중합을 실시하였다. 기상 중합에서 촉매의 최적의 활성은 Al/Ti 몰비로 377에서 나타났고, AlEt3의 농도에 따른 실험결과 중합반응속도는 Langmuir-Hinshelwood 모델을 이용하여 설명할 수 있었다. 기상 및 슬러리상에서 반응온도가 60℃일 경우 가장 좋은 활성을 보였으며, 겉보기 활성화에너지는 기상 중합(4.7Kcal/mol)보다는 슬러리상 중합(13Kcal/mol)에서 더 높았다. 고분자의 분자량은 점도계를 사용하여 측정하였으며, 에틸렌 반응압력이 증가할수록, 반응온도가 낮을수록, AlEt3 농도와 수소 농도가 감소할수록 고분자의 분자량은 증가하였다. 또한 에틸렌과 프로필렌, 에틸렌과 부텐-1과 공중합반응을 실시하였다. 공중합물의 몰비가 증가할수록 고유점도와 용융지수는 감소하였고, 공단량체의 농도가 20mol%에서 최대 활성을 나타냈다.
Homo- and co-polymerization of ethylene were carried out in both gas and slurry phases over Mg(OEt)2/THF/SiCl4/TiCl4-AlEt3 catalysts in the range of temperature 20-70℃ and pressure 2-10 psig. In gas phase polymerization, maximum activity was measured at the Al/Ti mole ration of 377, and reaction rate dependence on AlEt3 concentration could be explained with the Langmuir-Hinshelwood adsorption model. Even though maximum activities were obtained at the same temperature, 60℃ in both gas and slurry phases, overall activation energy was higher for the slurry phase(13kcal/mol) than for the gas phase(4.7kcal/mol) polymerization. The molecular weight behavior has been examined by measuring intrinsic viscosity. The molecular weight was increased as the ethylene pressure increased, and as the temperature and the concentration of AlEt3 and hydrogen decreased. Using two different comonomers(propylene and butene-1), the copolymerization of ethylene was carried out. The intrinsic viscosity and the melt index were decreased as comonomer concentration increased, and the maximum activity was observed when the concentration of comonomer is about 20 mol%.
  1. Chien JCW, Kuo CI, J. Polym. Sci. A: Polym. Chem., 24, 1779 (1986) 
  2. Kashiwa N, Tokuzumi T, Fujimura H, U.S. Patent, 3,642,746 (1972)
  3. Ohtake TA, Kashiwa N, U.S. Patent, 4,067,169 (1978)
  4. Elliott JH, Horowitz KH, Hoodock T, J. Polym. Sci., 14, 235 (1977)
  5. Chiang R, J. Polym. Sci., 28, 235 (1957) 
  6. Chiang R, J. Phys. Chem., 69, 1645 (1965)
  7. Keii T, "Kinetics of Ziegler-Natta Polymerization," Kodansha, Tokyo (1972)
  8. Marques MMV, Nunes CP, Tait PJT, Dias AR, J. Polym. Sci. A: Polym. Chem., 31, 209 (1993) 
  9. Chien JCW, Kuo C, J. Polym. Sci. A: Polym. Chem., 24, 2707 (1986) 
  10. Schindler A, J. Polym. Sci. C, 4, 81 (1963)
  11. Natta G, Pasquon I, Adv. Catal., 11, 1 (1959)
  12. Zakharov VA, React. Kinet. Catal. Lett., 2, 329 (1975) 
  13. Han JD, Kim I, Woo SI, Polym.(Korea), 13(2), 147 (1989)
  14. Burfield DR, Tait PJT, Polymer, 13, 315 (1972) 
  15. Keii T, Suzuki E, Tamura M, Murata M, Doi Y, Makromol. Chem., 183, 2285 (1982) 
  16. Vessely K, Pure Appl. Chem., 4, 407 (1962)
  17. Burfield DR, McKenzje ID, Tait PJT, Polymer, 13, 302 (1989) 
  18. Jeong DW, Choi HK, Han TK, Woo SI, Yong J, Ro JS, HWAHAK KONGHAK, 31(5), 556 (1993)
  19. Tait PJT, Jaber Ia, Loontjens AJ, "Catalytic Oleifn Polymerization," ed., Keii, T. and Soga, K., 11 (1989)
  20. Kim I, Woo SI, Polym.(Korea), 16(5), 570 (1992)
  21. Berger MN, Grieveson BM, Makromol. Chem., 83, 80 (1965) 
  22. Keii T, Soga K, Go S, Takahashi A, J. Polym. Sci. C, 23, 453 (1963)
  23. Natta G, Chim. Ind., 41(6), 519 (1959)
  24. Chien JCW, Hu Y, J. Polym. Sci. A: Polym. Chem., 25, 2881 (1983) 
  25. Spitz R, Masson P, Bobichon C, Guyot A, Makromol. Chem., 189, 1043 (1988) 
  26. Kim I, Kim JH, Choi HK, Chung MC, Woo SI, J. Appl. Polym. Sci., 48, 721 (1993) 
  27. Bukatov GD, "Copolymerization of Ethylene with Olefins by Higher Active Supported Catalysts," Transition Metals and Organometallics as Catalysts for Olfin Polymerization Proceedings. Hamburg, September 21-24 (1987)
  28. Shangan L, "Co- and Terpolymerization of Ethylene, Propylene and Butadiene with Supported Titanium Catalyst," Catalytic Olefin Polymerization Proceeding, Tokyo, October 23-25 (1989)