Journal of the American Chemical Society, Vol.124, No.11, 2466-2473, 2002
Noncovalent domino effect on helical screw sense of chiral peptides possessing C-terminal chiral residue
Recently, a novel chiral intermolecular interaction was found in an N-deprotected achiral nonapeptide that undergoes the predominance of one-handed screw sense through the addition of chiral small carboxylic acid (Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. J. Am. Chem. Soc. 2000, 122, 11731). We here clarify to what extent such noncovalent chiral domino effect affects the helical screw sense of an N-deprotected chiral peptide, Two chiral peptides consisting of C-terminal L-Leu (1) or L-Leu(2) (2) and the preceding achiral helical octapeptide segment were employed. NMR and IR spectroscopy, and energy calculation indicated that both peptides adopt a helical conformation in chloroform. Peptide 1 showed a small excess of a left-handed screw sense for the achiral helical octapeptide, but pepticle 2 strongly preferred a right-handed screw sense. The addition of chiral Boc amino acid to a chloroform solution of pepticle 1, depending on its chirality, underwent a unique helix-to-helix transition or led to remarkable stabilization of the original left-handed screw sense. Peptide 2 retained the original right-handed screw sense on addition of chiral Boc-amino acid, but its helical stability changed to some extent depending on its added chirality. Therefore, the importance of noncovalent domino effect for controlling the helical screw sense or helical stability of a chiral pepticle has been demonstrated here for the first time. In addition, we here have presented a unique system that both N-terminal noncovalent and C-terminal covalent domino effects operate simultaneously on the helical screw sense of a single achiral segment and have compared both powers for inducing the screw sense bias.