화학공학소재연구정보센터
Macromolecular Research, Vol.10, No.4, 221-229, August, 2002
Poly(ethylene terephthalate)(PET) Nanocomposites Filled with Fumed Silicas by Melt Compounding
E-mail:
PET nanocomposites filled with fumed silicas were prepared via direct melt compounding method at various mixing conditions such as filler type and filler content. Some fumed silicas were pre-treated to improve the wettability and dispersibility, and principal characterizations were performed to investigate the effects of nano fumed silicas on polymer matrix. Hydrophobic fumed silica (M-FS), which has the similar contact angles of water with neat PET, acted as the best reinforcement for the thermal stability and mechanical properties of PET nanocomposite, and FE-SEM images also showed that M-FS was uniformly dispersed into matrix and had good wettability. But, some filler (O-FS) had low dispersibility and caused the deterioration of mechanical properties. Besides, the results of DSC revealed the nucleation effect of all fillers in polymer matrix, and PET nanocomposite filled with hydrophilic fumed silica (FS) showed markedly the characteristic dynamic rheological properties such as shear thinning behavior at very low frequencies and the decrease of viscosity.
  1. Ko MB, Par M, Kim J, Choe CR, Korea Polym. J., 8(2), 95 (2000)
  2. Technical Bulletin no. 6, no. 11, Degussa Corporation, Aklon, OH (1989)
  3. Donnet JB, Wang MJ, Papirer E, Vidal A, Kautsch. Gummi Kunstst., 39(6), 510 (1986)
  4. Barthel H, Achenbach F, Maginot H, Proc. Int. Symp. on Mineral and Organic Functional Fillers in Polymers (MOFFIS 93), Universite de Namur, Belgium, 301 (1993)
  5. Hurd AJ, Schaefer DW, Martin JE, Phys. Rev., A, 35(5), 2361 (1987) 
  6. Schreuder FWAM, Stein HN, Rheol. Acta, 26, 45 (1987) 
  7. Lee G, Murray S, Rupprecht H, J. Colloid Interface Sci., 105(1), 257 (1985) 
  8. Barthel H, Colloids Surf. A: Physicochem. Eng. Asp., 101, 217 (1995) 
  9. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York (1994)
  10. Sumita M, Shizuma T, Miyasaka K, Ishikawa K, J. Macromol. Sci.-Phys., B22(4), 601 (1983)
  11. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J, Polymer, 42(21), 8759 (2001) 
  12. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K, Polymer, 42(1), 167 (2001) 
  13. Torro-Palau AM, Fernandez-Garcia JC, Orgiles-Barcelo AC, Martin-Martinez JM, Int. J. Adhes. Adhes., 21, 1 (2001) 
  14. Antikow Paul and Pinaud Francois, United States Patent No. 5,336,709 (1994)
  15. Breuning JJ, Johnson RD, Morris GK, U.S. Patent, 531976 (1984)
  16. Oh SY, Kim IN, Choi JW, Kim MS, Jang HD, J. Korean Ind. Eng. Chem., 11(8), 890 (2000)
  17. Lux HG, Meier K, Muller A, Oelmuller R, Ramb A, U.S. Patent, 6,191,122 (2001)
  18. Lee JK, Lee KH, Jin BS, Macromol. Res., 10(1), 44 (2002)
  19. Lewis TB, Nielsen LE, J. Appl. Polym. Sci., 14, 1449 (1970) 
  20. Nielsen LE, J. Appl. Phys., 41, 4626 (1970) 
  21. McGee S, McCullough RL, Polym. Compos., 2, 149 (1981) 
  22. Lewis TB, Nielsen LE, Trans. Soc. Rheol., 12, 421 (1968) 
  23. Brodnyan JG, Trans. Soc. Rheol., 12, 357 (1968) 
  24. Katz HS, Milewski JV, Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York (1978)
  25. Al-Jarallah M, Trons E, J. Test. Eval., 9, 3 (1981)
  26. Gupta RK, Seshadri SG, J. Rheol., 30, 503 (1986) 
  27. Li D, Neumann AW, J. Colloid Interface Sci., 148, 190 (1992) 
  28. Han CD, Kim J, Kim JK, Macromolecules, 22, 383 (1989) 
  29. Cho JW, Paul DR, Polymer, 42(3), 1083 (2001)