Journal of Applied Polymer Science, Vol.86, No.4, 993-1008, 2002
Optimal reaction conditions for the minimization of energy consumption and by-product formation in a poly(ethylene terephthalate) process
We determined the optimal reaction conditions to minimize the energy cost and the quantities of by-products for a poly(ethylene terephthalate) process by using the iterative dynamic programming (IDP) algorithm. Here, we employed a sequence of three reactor models: the semibatch transesterification reactor model, the semibatch prep polymerization reactor model, and the rotating-disc-type polycondensation reactor model. We selectively chose or developed the reactor models by incorporating experimentally verified kinetic models reported in the literature. We established the model for the entire reactor system by connecting the three reactor models in series and by resolving some joint problems arising when different types of reactor models were interconnected. On the basis of the simulation results of the reactor system, we scrutinized the cause and effect between the reaction conditions and the final quality of the polymer product. Here, we set up the optimization strategy by using IDP on the basis of the integrated reactor model, and the process variables with significant influence on the properties of polymer were selected as control variables with the help of a simulation study. With this method, we could refine the reaction conditions at the end of each iteration step by contracting the spectra of control regions, and the iteration process finally stopped when the profile of the optimal trajectory converged. We also took the constraints on the control variables into account to guarantee polymer quality and to suppress side reactions. Constituting six different strategies by setting weighting vectors differently, we examined the differences in optimal trajectories, the trend of optimality, and the quality of the final polymer product. For each of the strategies, we conducted the optimization to examine whether the number-average degree of polymerization approached the desired value.
Keywords:polycondensation;poly(ethylene terephthalate);simulations;optimization;iterative dynamic programming;constraint