Journal of the American Chemical Society, Vol.124, No.34, 10163-10170, 2002
Electron affinity of the guanine-cytosine base pair and structural perturbations upon anion formation
The adiabatic electron affinity (AEA) for the Watson-Crick guanine-cytosine (GC) DNA base pair is predicted using a range of density functional methods with double- and triple-xi plus polarization plus diffuse (DZP++ and TZ2P++) basis sets in an effort to bracket the true electron affinity. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chem. Rev. 2002, 102, 231). Optimized structures for GC and the GC anion are compared to the neutral and anionic forms of the individual bases as well as Rich's 1976 X-ray structure for sodium guanylyl-3',5'-cytidine nonahydrate, GpC.9H(2)O. Structural distortions and natural population (NPA) charge distributions of the GC anion indicate that the unpaired electron is localized primarily on the cytosine moiety. Unlike treatments using second-order perturbation theory (MP2), density functional theory consistently predicts a substantial positive adiabatic electron affinity for the GC pair (e.g., TZ2P++/B3LYP: +0.48 eV). The stabilization of C- via three hydrogen bonds to guanine is sufficient to facilitate adiabatic binding of an electron to GC and is also consistent with the positive experimental electron affinities obtained by photoelectron spectroscopy of cytosine anions incrementally microsolvated with water molecules. The pairing (dissociation) energy for GC(-) (35.6 kcal/mol) is determined with inclusion of electron correlation and shows the anion to have greater thermodynamic stability; the pairing energy for neutral GC (TZ2P++/B3LYP 23.9 kcal/mol) compares favorably to previous MP2/6-31 G(*) (23.4 kcal/mol) results and a debated experiment (21.0 kcal/mol).