화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.124, No.36, 10706-10711, 2002
Intermolecular complexes of HXeOH with water: Stabilization and destabilization effects
Theoretical and matrix-isolation studies of intermolecular complexes of HXeOH with water molecules are presented, The structures and possible decomposition routes of the HXeOH-(H2O)(n) (n=0, 1, 2, 3) complexes are analyzed theoretically. It is concluded that the decay of these metastable species may proceed through the bent transition states (TSs), leading to the global minima on the respective potential energy surfaces, Xe+(H2O)(n+1). The respective barrier heights are 39.6, 26.6, 11.2, and 0.4 kcal/mol for n=0, 1, 2, and 3. HXeOH in larger water clusters is computationally unstable with respect to the bending coordinate, representing the destabilization effect, Another decomposition channel of HXeOH-(H2O)(n), via a linear TS, leads to a direct break of the H-Xe bond of HXeOH. In this case, the attached water molecules stabilize HXeOH by strengthening the H-Xe bond. Due to the stabilization, a large blue shift of the H-Xe stretching mode upon complexation of HXeOH with water molecules is featured in calculations. On the basis of this computational result, the IR absorption bands at 1681 and 1742 cm(-1) observed after UV photolysis and annealing of multimeric H2O/Xe matrixes are assigned to the HXeOH-H2O and HXeOH-(H2O)(2) complexes, These bands are blue-shifted by 103 and 164 cm(-1) from the known monomeric HXeOH absorption.