Applied Catalysis B: Environmental, Vol.37, No.4, 321-330, 2002
Gas-phase photocatalytic degradation of trichloroethylene on pretreated TiO2
This paper reports the effects of preillumination, prechlorination and prehydroxylation of TiO2 glass fiber cloth (TiO2-GFC) on the photocatalytic degradation (PCD) reaction of trichloroethylene (TCE) in gas-solid regime. The reaction was monitored in situ by FT-IR spectroscopy at room temperature (similar to298 K). Product analysis by gas chromatography-mass spectrometry (GC-MS) revealed the formation of a new by-product, 1,1-dichloroethane (1,1-DCE) in significant amount along with other known by-products. The photocatalytic activities of TiO2-GFC and the mineralization of TCE were dependent on preillumination, prehydroxylation and prechlorination while the product yield was significantly influenced by prehydroxylation and prechlorination of TiO2-GFC. Prechlorination increased the yields of phosgene (COCl2) and pentachloroethane (C2HCl5) while prehydroxylation decreased the yield of COCl2 with corresponding increases in the yield of oxalyl chloride (COClCOCl) and the mineralization of TCE, suggesting a possible surface-mediated hydrolysis of phosgene to COClCOCl in the latter case. Reaction schemes have been proposed to account for the formation of 1,1-DCE and COClCOCl. The photocatalytic activity of TiO2-GFC and the mineralization of TCE have been found to correlate with the concentration of HCl employed for the prechlorination of TiO2-GFC.