화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.6, 737-744, November, 2002
DSC와 FTIR을 이용한 상용성 (폴리부틸렌나프탈레이트/폴리비닐페놀) 블렌드의 연구
DSC and FTIR Studies of Miscible Poly(butylene 2,6-naphthalate/Poly(4-vinylphenol) Blends
E-mail:
초록
결정성 폴리부틸렌타프탈레이트(PBN)와 비결정성 폴리비닐페놀 (PVPh)로 구성된 2 성분계 고분자 블렌드의 열역학적 상용성을 시차주사열분석 (DSC)과 푸리에변환 적외선 (FTIR) 분광분석으로 조사하였다. PBN/PVPh 블렌드의 DSC 측정 결과로부터 블렌드 전 조성에서 단일 유리전이온도(Tg)가 확인되었으며, 블렌드 내의 PVPh 조성이 증가함에 따라 PBN 결정질의 용융점(Tm) 강하가 관찰되었다. 고분자 블렌드의 단일 Tg 및 Tm 강하 현상은 PBN/PVPh 블렌드가 분자수준에서의 열역학적 상용성이 있음을 보여준다. PBN의 에스테르 카르보닐기와 PVPh의 히드록실기 사이에 강한 분자 간 수소결합이 형성됨을 FTIR 분석에 의하여 확인할 수 있었다.
Thermodynamic miscibility of the binary blends composed of semi-crystalline poly (butylene 2,6-naphthalate) (PBN) and amorphous poly(4-vinylphenol) (PVPh) was investigated using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC scan results showed that there was a single glass transition temperature (Tg) for each blend. Crystalline melting temperature (Tm) depression of the PBN in the blends was also observed with the increase of PVPh content. Both results of the single Tg and the depression of Tm for the PBN/PVPh blends indicate that the blends are thermodynamically miscible at the molecular level. FTIR spectroscopic analysis confirmed that strong intermolecular hydrogen bonding interactions between the ester carbonyl groups of the PBN and the hydroxyl groups of the PVPh are occurred.
  1. Wang CS, Sun YM, "Poly(alkylene naphthalate)," in "Polymeric Materials Encyclopedia," ed. by J.C. Salamone, vol. 7, p. 5355, CRC Press, New York (1996)
  2. Barber JB, Siddiqui JA, ACS Polym. Prepr. Div. Polym. Chem., 39(1), 648 (1998)
  3. Jager J, Juijn JA, Vandenheuvel CJ, Huijts RA, J. Appl. Polym. Sci., 57(12), 1429 (1995) 
  4. Money JK, J. Coat. Fabrics, 25, 24 (1995)
  5. Fakirov S, "Transreactions in Condensation Polymers," Wiley-VCH, Weinheim (1999)
  6. Wu G, Cuculo JA, Polymer, 40(4), 1011 (1999) 
  7. Aoki Y, Li L, Amari T, Nishimura K, Arashiro Y, Macromolecules, 32(6), 1923 (1999) 
  8. Guo M, Zachmann HG, Polymer, 34, 2503 (1993) 
  9. Stewart ME, Cox AJ, Naylor M, Polymer, 34, 4060 (1993) 
  10. Park JK, Jeong BJ, Kim SH, Polym.(Korea), 24(1), 113 (2000)
  11. Lin CH, Wang CS, Polym. Bull., 46(2-3), 191 (2001) 
  12. Chen HL, Hwang JC, Chen CC, Wang RC, Fang DM, Tsai MJ, Polymer, 38(11), 2747 (1997) 
  13. Moskala EJ, Howe SE, Painter PC, Coleman MM, Macromolecules, 17, 1671 (1984) 
  14. Belfiore LA, Qin C, Ueda E, Pires ATN, J. Polym. Sci. B: Polym. Phys., 31, 409 (1993) 
  15. Serman CJ, Xu Y, Painter PC, Coleman MM, Macromolecules, 22, 2015 (1989) 
  16. Landry CJT, Teegarden DM, Macromolecules, 24, 4310 (1991) 
  17. Landry MR, Massa DJ, Landry CJ, Teegarden DM, Colby RH, Long TE, Henrichs PM, J. Appl. Polym. Sci., 54(8), 991 (1994) 
  18. VanKrevelen DW, "Properties of Polymers," Elsevier Scientific, Amsterdam (1990)
  19. Fox JG, Bull. Am. Phys. Soc., 1, 123 (1956)
  20. Gordon M, Taylor JS, Appl. Chem., 2, 493 (1952)
  21. Couchman PR, Macromolecules, 11, 1156 (1978) 
  22. Kwei TK, J. Polym. Sci. C: Polym. Lett., 22, 307 (1984)
  23. Papageorgiou GZ, Karayannidis GP, Polymer, 42(6), 2637 (2001) 
  24. Karayannidis GP, Papageorgiou GZ, Bikiaris DN, Tourasanidis EV, Polymer, 39(17), 4129 (1998) 
  25. Park SS, Kim IK, Im SS, Polym.(Korea), 18(2), 150 (1994)
  26. Lee SC, Yoon KH, Kim JH, Polym. J., 29, 1 (1997) 
  27. Zhou C, Chough SB, Polym. Eng. Sci., 28, 65 (1988) 
  28. Ju MY, Chang FC, Polymer, 42(11), 5037 (2001) 
  29. Nishi T, Wang TT, Macromolecules, 8, 909 (1975) 
  30. Hoffman JD, Weeks JJ, J. Res. Nalt. Bur. Stand. Sect. A, 66, 13 (1962)
  31. Ouchi I, Hosoi M, Shimotsuma S, J. Appl. Polym. Sci., 21, 3445 (1977) 
  32. Chiba T, Asai S, Xu WG, Sumita M, J. Polym. Sci. B: Polym. Phys., 37(6), 561 (1999) 
  33. Ju MY, Huang JM, Chang FC, Polymer, 43(7), 2065 (2002) 
  34. Koyano H, Yamamoto Y, Saito Y, Yamanobe T, Komoto T, Polymer, 39(18), 4385 (1998) 
  35. Moskala EJ, Varnell DF, Coleman MM, Polymer, 26, 228 (1985)