화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.6, 767-777, November, 2002
4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구
Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends
E-mail:
초록
본 실험에서는 4관능성 에폭시 수지(4EP)와 생분해성 modified aliphatic polyester (MAP) 블렌드의 경화 거동, 열안정성, 유변학적 특성, 그리고 기계적 특성을 살펴보았다. DSC 측정 결과, 경화 활성화 에너지(Ea)는 4EP에 대한 MAP의 비율이 10 wt%로 증가함에 따라 증가하였다. 이는 4EP와 MAP 사이의 분자상호작용이 증가하였기 때문으로 사료된다. 열안정성과 관련있는 분해 활성화 에너지(Et)는 Coats-Redfern 방법을 이용하여 구하였으며 MAP의 함량비가 10에서 30 wt% 내에서 증가하였다. 이는 블렌드 시스템에서의 가교 밀도의 증가 때문으로 사료된다. 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 검토하였고, 겔화 시간과 경화 온도를 이용한 Arrhenius 방정식을 적용하여 가교 활성화 에너지 (Ec)를 검토한 결과, Ea와 유사한 경향을 나타내었다. 기계적 계면특성인 파괴인성(KIC)은 시편의 semi-IPN 구조 거동으로 고찰하였다.
In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (Ea) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (Et) derived from Coats-Redfern method, were increased within the 10~30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (Ec) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the Ec showed a similar behavior with Ea. The fracture toughness (KIC) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.
  1. Lee H, Neville K, "Handbook of Epoxy Resins," McGraw-Hill, New York (1990)
  2. Park SJ, "Interfacial Forces and Fields: Theory and Applications," ed. by J.P. Hsu, Marcel Dekker, New York (1999)
  3. Park SJ, Park WB, Lee JR, Polym. J., 31, 28 (1999) 
  4. Ryu SK, Park BJ, Park SJ, J. Colloid Interface Sci., 215(1), 167 (1999) 
  5. Benedict CV, Cook WJ, Jarrett P, Cameron JA, Juang SJ, Bell JP, J. Appl. Polym. Sci., 28, 327 (1983) 
  6. Gada M, Gross RA, McCarthy SP, "Biodegradable Plastics and Polymers," eds. by Y. Doi and K. Fukuda, p. 177, Elsevier Sci., New York (1994)
  7. May CA, "Epoxy Resin," Marcel Dekker, New York (1998)
  8. Wheeler RL, "The Epoxy Resin Formulators Training Manual," The Society of The Plastics Industry, New York (1984)
  9. Espuche E, Galy J, Gerard JF, Pascault JP, Sautereau H, Macromol. Symp., 93, 107 (1995)
  10. Winter HH, Polym. Eng. Sci., 27, 1698 (1987) 
  11. Waters DN, John LP, Anal. Chem., 60, 53 (1988) 
  12. Laza JM, Julian CA, Larrauri E, Rodriguez M, Leon LM, Polymer, 40(1), 35 (1999) 
  13. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
  14. Mimura K, Ito H, Fujioka H, Polymer, 41(12), 4451 (2000) 
  15. Lee LH, J. Polym. Sci., 3, 895 (1965) 
  16. Turk MJ, Ansari AS, Alston WB, Gahn GS, Frimer AA, Scheiman DA, J. Polym. Sci. A: Polym. Chem., 37(21), 3943 (1999) 
  17. Simpson JO, Bidstrup SA, J. Polym. Sci. B: Polym. Phys., 33(1), 55 (1995) 
  18. Aklonis JJ, MacKnight WJ, "Introduction to Polymer Viscoelasticity," 2nd ed., Amherst, Los Angeles (1982)
  19. Tung CM, Dynes PJ, J. Appl. Polym. Sci., 27, 569 (1982) 
  20. Park SJ, Seo MK, Lee JR, J. Polym. Sci. A: Polym. Chem., 38(16), 2945 (2000) 
  21. Oyanguren PA, Williams RJ, J. Appl. Polym. Sci., 47, 1361 (1993) 
  22. Takahama T, Geil PH, J. Polym. Sci., 20, 453 (1982)
  23. Chen MC, Hourston DJ, Sun WB, Eur. Polym. J., 31, 199 (1995) 
  24. Gopal P, Dharani LR, Blum FD, Polym. Polym. Compos., 5, 327 (1997)