화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.6, 792-802, November, 2002
방사선 가교에 의해 제조된 Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/글리세린/키토산 하이드로겔의 제조 및 특성
Preparation and Characterization of Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/Glycerin/Chitosan Hydrogels by Radiation
E-mail:
초록
본 연구에서는, 방사선(60Co γ-rays) 가교를 이용하여 poly(vinyl alcohol)(PVA)/poly(N-vinylpyrrolidone)(PVP)/글리세린/키토산의 혼합물로부터 하이드로겔을 제조하였다. 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도 같은 기계적 성질을 측정하였다. PVA와 PVP의 조성비는 6 : 4, 키토산은 0.3 wt%, 글리세린은 0~5 wt%, PVA/PVP/글리세린/키토산 수용액의 고형분의 농도는 15 wt%이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/PVP/글리세린/키토산 혼합물에 25~60 kGy의 감마선을 조사하였다. 겔화율과 겔강도는 글리세린 조성비가 작을수록, 조사선량이 커질수록 증가하였다. 팽윤도는 글리세린 조성비가 클수록, 조사선량이 작을수록 증가하였다. PVA/PVP/글리세린/키토산 하이드로겔에서 글리세린은 겔 모양의 변형을 막는다. 제조된 하이드로겔이 상업용 바셀린 거즈보다 치료 효과가 우수하였다.
In this study, hydrogels from mixtures of poly(vinyl alcohol)(PVA)/poly(N-vinylpyrrolidone)(PVP)/glycerin/chitosan were prepared by γ-ray iradiation and the mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the applicability of these for wound dressing. Then PVA:PVP was weight ratio of 6 : 4, the concentration of chitosan was 0.3 wt%, the concentration of glycerin was in the range of 0~5 wt%. The solid concentration of PVA/PVP/glycerin/chitosan solution was 15 wt%. Gamma irradiation doses of 25, 35, 50, and 60 kGy, were exposed to a mixture of PVA/PVP/glycerin/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as glycerin concentration in PVA/PVP/glycerin/chitosan decreased, and as irradiation dose increased. Swelling degree increased as glycerin concentration in PVA/PVP/glycerin/chitosan increased, and as irradiation dose decreased. The glycerin in PVA/PVP/glycerin/chitosan hydrogel prevented the transformation of shape. These hydrogel dressings had better curing effect than vaseline gauge.
  1. Silver FH, Doillon C, "Biocompatibility, Interactions of Biological and Implantable Materials," VCH, New York (1989)
  2. Peppas NA, "Hydrogels in Medicine and Pharmacy," ed. by Boca Raton, Vol. I, II, III, CRC Press, Inc., Florida (1986)
  3. Pedley DG, Skelly PJ, Tighe BJ, Br. Polym. J., 10, 99 (1980)
  4. Ralner BD, "Biomedical Applications of Hydrogels: Review and Critical Appraisal," ed. by D.F. Williams, p. 145, CRC Press, Boca Raton (1981)
  5. Kudela V, "Polymers: Biomaterials and Medical Applications," ed. by J.I. Kroschwitz, p. 228, John Wiley & Sons, New York (1989)
  6. Rosiak JM, J. Control. Release, 31, 9 (1994) 
  7. Chandy T, Sharma CP, Biomat. Art. Cells. Art. Org., 18, 1 (1990)
  8. Braek GS, Anthonsen T, Sandford P, "Chitin and Chitosan," Elsevier, Press, New York (1989)
  9. Zikakis JP, "Chtin, Chitosan and Related Enzymes," Academic Press, New York (1984)
  10. Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials, 15, 231 (1994) 
  11. Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Angew. Makromol. Chem., 240, 213 (1996) 
  12. Clough RL, Shalaby SW, "Radiation Effects on Polymers," P. 271, Maple Press, Inc., York, PA (1990)
  13. Rosiak JM, Rucinska-Rybus A, Pekala W, U.S. Patent, 4,871,490 (1989)
  14. Rosiak JM, Ulanski P, Pajensky LA, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 46(2), 161 (1995) 
  15. Hassan CM, Ward JH, Peppas NA, Polymer, 41(18), 6729 (2000) 
  16. Tranquilan-Aranilla C, Yoshii F, DelaRosa AM, Makuuchi K, Radiat. Phys. Chem., 55, 127 (1999) 
  17. Miranda LF, Lugao AB, Machado LDB, Ramanathan LV, Radiat. Phys. Chem., 55, 709 (1999) 
  18. Odland G, Ross R, J. Cell. Biology, 39, 135 (1968) 
  19. Winter GD, Plast. Reconstr. Surg., 56, 531 (1975) 
  20. Rovee DT, Kurow CA, Labun J, Archines Dermatology, 106, 330 (1972)