Polymer(Korea), Vol.26, No.6, 792-802, November, 2002
방사선 가교에 의해 제조된 Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/글리세린/키토산 하이드로겔의 제조 및 특성
Preparation and Characterization of Poly(vinyl alcohol)/Poly(N-vinylpyrrolidone)/Glycerin/Chitosan Hydrogels by Radiation
E-mail:
초록
본 연구에서는, 방사선(60Co γ-rays) 가교를 이용하여 poly(vinyl alcohol)(PVA)/poly(N-vinylpyrrolidone)(PVP)/글리세린/키토산의 혼합물로부터 하이드로겔을 제조하였다. 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도 같은 기계적 성질을 측정하였다. PVA와 PVP의 조성비는 6 : 4, 키토산은 0.3 wt%, 글리세린은 0~5 wt%, PVA/PVP/글리세린/키토산 수용액의 고형분의 농도는 15 wt%이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/PVP/글리세린/키토산 혼합물에 25~60 kGy의 감마선을 조사하였다. 겔화율과 겔강도는 글리세린 조성비가 작을수록, 조사선량이 커질수록 증가하였다. 팽윤도는 글리세린 조성비가 클수록, 조사선량이 작을수록 증가하였다. PVA/PVP/글리세린/키토산 하이드로겔에서 글리세린은 겔 모양의 변형을 막는다. 제조된 하이드로겔이 상업용 바셀린 거즈보다 치료 효과가 우수하였다.
In this study, hydrogels from mixtures of poly(vinyl alcohol)(PVA)/poly(N-vinylpyrrolidone)(PVP)/glycerin/chitosan were prepared by γ-ray iradiation and the mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the applicability of these for wound dressing. Then PVA:PVP was weight ratio of 6 : 4, the concentration of chitosan was 0.3 wt%, the concentration of glycerin was in the range of 0~5 wt%. The solid concentration of PVA/PVP/glycerin/chitosan solution was 15 wt%. Gamma irradiation doses of 25, 35, 50, and 60 kGy, were exposed to a mixture of PVA/PVP/glycerin/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as glycerin concentration in PVA/PVP/glycerin/chitosan decreased, and as irradiation dose increased. Swelling degree increased as glycerin concentration in PVA/PVP/glycerin/chitosan increased, and as irradiation dose decreased. The glycerin in PVA/PVP/glycerin/chitosan hydrogel prevented the transformation of shape. These hydrogel dressings had better curing effect than vaseline gauge.
- Silver FH, Doillon C, "Biocompatibility, Interactions of Biological and Implantable Materials," VCH, New York (1989)
- Peppas NA, "Hydrogels in Medicine and Pharmacy," ed. by Boca Raton, Vol. I, II, III, CRC Press, Inc., Florida (1986)
- Pedley DG, Skelly PJ, Tighe BJ, Br. Polym. J., 10, 99 (1980)
- Ralner BD, "Biomedical Applications of Hydrogels: Review and Critical Appraisal," ed. by D.F. Williams, p. 145, CRC Press, Boca Raton (1981)
- Kudela V, "Polymers: Biomaterials and Medical Applications," ed. by J.I. Kroschwitz, p. 228, John Wiley & Sons, New York (1989)
- Rosiak JM, J. Control. Release, 31, 9 (1994)
- Chandy T, Sharma CP, Biomat. Art. Cells. Art. Org., 18, 1 (1990)
- Braek GS, Anthonsen T, Sandford P, "Chitin and Chitosan," Elsevier, Press, New York (1989)
- Zikakis JP, "Chtin, Chitosan and Related Enzymes," Academic Press, New York (1984)
- Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials, 15, 231 (1994)
- Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Angew. Makromol. Chem., 240, 213 (1996)
- Clough RL, Shalaby SW, "Radiation Effects on Polymers," P. 271, Maple Press, Inc., York, PA (1990)
- Rosiak JM, Rucinska-Rybus A, Pekala W, U.S. Patent, 4,871,490 (1989)
- Rosiak JM, Ulanski P, Pajensky LA, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 46(2), 161 (1995)
-
Hassan CM, Ward JH, Peppas NA, Polymer, 41(18), 6729 (2000)
- Tranquilan-Aranilla C, Yoshii F, DelaRosa AM, Makuuchi K, Radiat. Phys. Chem., 55, 127 (1999)
- Miranda LF, Lugao AB, Machado LDB, Ramanathan LV, Radiat. Phys. Chem., 55, 709 (1999)
- Odland G, Ross R, J. Cell. Biology, 39, 135 (1968)
- Winter GD, Plast. Reconstr. Surg., 56, 531 (1975)
- Rovee DT, Kurow CA, Labun J, Archines Dermatology, 106, 330 (1972)