Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.6, 606-612, October, 2002
환원ㆍ산화처리한 동함유 모더나이트 결정의 열화 특성
Deterioration of Mordenite Crystal through Redox Treatment on Copper-Containing Mordenites
E-mail:
초록
수소형 모더나이트와 탈알루미늄 모더나이트에 여러 함량의 동을 수용액 함침으로 담지한 후 500 ℃ 또는 750 ℃에서 수소/산소로 환원ㆍ산화처리하여 CuO/HM과 CuO/DM 시료를 제조하였다. XRD와 SEM 분석을 통하여 이들 시료의 결정 상태에 대하여 연구하였다. 500 ℃에서 환원ㆍ산화처리한 시료에서는 모더나이트의 결정열화가 나타나지 않았다. 750 ℃에서 환원ㆍ산화처리한 CuO/HM 시료에서는 모더나이트 동함량 변화에 따라 단위격자가 수축하면서 모더나이트의 결정열화가 심화하였다. 750 ℃에서 환원처리시 모든 축에서 수축한 CuO/DM의 단위 격자는 같은 온도에서 산화처리 함으로서 b축으로만 증가하였다. 따라서 750 ℃에서 환원ㆍ산화처리한 CuO/DM은 한 축 방향으로 결정열화가 일어난다는 것을 알 수 있었다.
Hydrogen mordenite and aluminum-deficient mordenite with various copper content were prepared by impregnation in aqueous solution, and they were treated with H2/O2 redox cycle at 500 or 750 ℃. XRD patterns and SEM were used to study the crystal phase and morphology of both CuO/HM and CuO/DM, respectively. The deterioration of mordenite crystals was not evident in the CuO/HM and CuO/Dm, which were treated with H2/O2 redox cycle at 500 ℃. However, when the CuO/HM that was treated with H2/O2 redox cycle at 750 ℃, the deterioration of mordenite crystals increased in proportion to the shrinkage of crystal unit cell that depended on its copper content. The unit cell of CuO/DM crystal that shrunk in all axes through the reduction treatment at 750 ℃, expanded only in b-axis when the oxidation took place at the same temperature. Therefore, it was found that the mordenite crystal of CuO/DM deteriorated in the direction of one axis by treating with H2/O2 redox cycle at 750 ℃.
- Kucherov AV, Slinkin AA, Kondratev DA, Bondarenko TN, Rubinstein AM, Kinachev M, Zeolites, 5, 320 (1985)
- Miro EE, Ardiles DR, Lombardo EA, Petunchi JO, J. Catal., 97, 43 (1986)
- Sass CE, Kevan L, J. Phys. Chem., 93, 4669 (1989)
- Matsumoto H, Tanabe S, J. Phys. Chem., 94, 4207 (1990)
- Kucherov AV, Slinkin AA, Zeolites, 6, 175 (1986)
- Lee KN, Lee CY, Lee WK, Korean J. Chem. Eng., 13(1), 67 (1996)
- Lee CY, Ha BK, Stud. Surf. Sci. Catal., 84, 1563 (1994)
- Miro EE, Lombardo EA, Petunchi JO, J. Catal., 104, 176 (1987)
-
Lee CY, Choi KY, Ha BH, Appl. Catal. B: Environ., 5(1-2), 7 (1994)
-
Spassova I, Khristova M, Panayotov D, Mehandjiev D, J. Catal., 185(1), 43 (1999)
- Lee CY, Han KH, Ha BH, Microporous Mater., 11, 227 (1997)
- Lee CY, Ha BH, Stud. Surf. Sci. Catal., 126, 203 (1999)
- Breck DW, Zeolite Molecular Sieves, John Wiley & Sons, New York, 29 (1974)
- Olson RW, Rollmann LD, Inorg. Chem., 16, 651 (1977)
- Meier WM, Olson DH, Atlas of Zeolite Structure Types, Butterworths, London, 102 (1987)
- Ha BH, Guidot J, Barthomeuf D, J. Chem. Soc.-Faraday Trans., 75, 1245 (1979)
- Jacobs PA, Beyer HK, J. Phys. Chem., 83, 1174 (1979)
- Iwamoto M, Nakamura M, Nagano H, Kagawa S, Seiyama T, J. Phys. Chem., 86, 153 (1982)