Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.8, 777-781, December, 2002
전해 동도금 처리에 의한 활성탄소섬유의 표면 특성 및 NO 제거
Surface Characteristics and NO Removal of Activated Carbon Fibers Treated by Cu Electroplating
E-mail:
초록
본 연구에서는 NO의 제거를 위하여 전해 동도금 방법으로 활성탄소섬유를 표면처리하였으며, 도금 처리된 활성탄소섬유는 pH와 FT-IR 측정을 통하여 표면특성변화를 살펴보았다. 비표면적, 미세기공부피 그리고 미세기공도를 포함한 N2/77 K 등온 흡착 특성은 BET식과 Boer의 t-plot을 이용하여 확인하였으며 NO 제거효율은 가스크로마토그래프를 이용하여 측정하였다. 본 실험결과, Cu 금속이 도입된 활성탄소섬유는 도금량이 증가함에 따라 비표면적과 미세기공부피 그리고 미세기공도의 감소에도 불구하고 C-NO-Cu의 촉매반응으로 인하여 NO 제거율이 증가하였으며 NO 흡착성능 감소율은 감소하였다. 이는 전해 동도금 처리에 의해 활성탄소섬유 표면에 도금된 Cu의 함량이 NO 제거반응에서 중요한 변수로 작용하기 때문인 것으로 생각되어진다.
In this study, in effort to remove nitric oxide (NO) copper metal was deposited onto activated carbon fibers (ACFs) by electroplating technique. The surface properties of ACFs were determined by pH and FT-IR: N2/77 K adsorption isotherm characteristics including the specific surface area and micropore volume were investigated by BET and t-plot methods, respectively. NO removal efficiency was confirmed by gas chromatographic technique. From the experimental results, the copper metal supported on ACFs appeared to increase the NO removal and decrease the NO adsorption efficiency reduction rate, in spite of decreased BET's specific surface area, micropore volume, and microporosity of the ACFs. Consequently, the Cu content in ACFs played an important role in improving the NO removal, which was probably due to the catalytic reactions of C-NO-Cu.
- Noll KE, Gounaris V, Hou WS, Adsorption Technology for Air Water Pollution Control, Lewis, Michigan (1992)
- Calvert S, Englund HM, Handbook of Air Pollution Technology, John Wiley & Sons, New York (1984)
-
Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999)
-
Zhu ZP, Liu ZY, Liu SJ, Niu HX, Appl. Catal. B: Environ., 30(3-4), 267 (2001)
-
Hu YH, Ruckenstein E, J. Catal., 172(1), 110 (1997)
-
Ruckenstein E, Hu YH, Ind. Eng. Chem. Res., 36(7), 2533 (1997)
-
Denton P, Giroir-Fendler A, Schuurman Y, Praliaud H, Mirodatos C, Primet M, Appl. Catal. A: Gen., 220(1-2), 141 (2001)
- Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37, 1619 (1999)
-
Chung TW, Chung CC, Chem. Eng. Sci., 54(12), 1803 (1999)
-
Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
- Lowell S, Shields JE, Powder Surface Area and Porosity, Chapman & Hall, London (1993)
-
Park SJ, Donnet JB, J. Colloid Interface Sci., 200(1), 46 (1998)
-
Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Lippens BC, deBoer JH, J. Catal., 4, 319 (1965)
- Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
-
Park SJ, Jung WY, J. Colloid Interface Sci., 243(2), 316 (2001)
- Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
- Bruni P, Cingolani F, Iacussi M, Pierfederici F, Tosi G, J. Mol. Struct., 565, 237 (2001)
-
Park SJ, Kim KD, J. Colloid Interface Sci., 218(1), 331 (1999)
-
Parvulescu VI, Oelker P, Grange P, Delmon B, Appl. Catal. B: Environ., 16(1), 1 (1998)