화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.6, 741-745, December, 2002
Sol-Gel법에 의해 제조된 Zirconia 나노분말의 결정상과 기공특성
Phase Composition and Pore Structure of Sol-Gel Derived Zirconia Nanopowders
E-mail:
초록
Sol-Gel법에 의해 출발물질로 zirconium-n-butoxide(ZNB)와 yttrium nitrate를 사용하여 yttria-stabilized zirconia(YSZ) 나노분말을 제조하였다. 또한 ZNB의 가수분해 동안 첨가된 물량의 변화가 얻어진 YSZ 나노분말의 결정상과 기공특성에 미치는 영향을 조사하였다. 하소온도 변화에 따른 결정상 변화는 첨가된 물량에 관계없이 동일한 양상을 보였다. 즉, 100 ℃에서 건조된 분말은 모두 비정질상이었으며, 400 ℃에서 입방정상의 결정구조로 전환되었고, 1,000 ℃에서 정방정상과 단사정상이 나타나 1,400 ℃까지 정방정상과 단사정상이 공존하는 결정구조를 보였다. ZNB의 가수분해 중 물의 양이 비교적 적게 첨가된 경우로(H2O/ZNB=20이하) 제조된 분말은 mesopore의 기공분포를 보인 반면, 물의 양이 비교적 많이 첨가된 경우에서는 (H2O/ZNB=50이상) micropore의 기공분포를 보였다.
Yttria-stabilized zirconia(YSZ) nanopowders were prepared by sol-gel method using zirconium-n-butoxide(ZNB) and yttrium nitrate as precursors. In addition, the effect of water content added during the hydrolysis reaction of ZNB was investigated on the phase composition and pore structure of the product powders. The phase composition of YSZ nanopowders with calcination temperatures showed the same trend, irrespective of H2O amounts added during the hydrolysis reaction of ZNB. All powders dried at 100 ℃ were amorphous and transformed to cubic phase at 400 ℃, which converted to tetragonal phase at 1,000 ℃. Monoclinic phase also appeared at 1,000 ℃. The powders showed the mixture of tetragonal and monoclinic phases from 1,000 ℃ to 1,400 ℃. The pore size distributions of the dried powders prepared with small amounts of water(less than or equal to H2O/ZNB=20) showed mesopores, while those prepared with large amounts of water(greater than or equal to H2O/ZNB=50) exhibited micropores.
  1. Nguyen QM, J. Am. Ceram. Soc., 76, 563 (1993) 
  2. Gupta TK, Lange FF, Bechtold JH, J. Mater. Sci., 13, 1464 (1978) 
  3. Drummond JL, J. Am. Ceram. Soc., 72, 675 (1989) 
  4. Yamakawa T, Ishizawa N, Uematsu K, Mizutani N, J. Cryst. Growth, 75, 623 (1986) 
  5. Mazdiyasni KS, Lynch CT, Smith JS, J. Am. Ceram. Soc., 50, 534 (1967)
  6. Ishizawa H, Sakurai O, Mizutani N, Kato M, Am. Ceram. Soc. Bull., 65, 1399 (1986)
  7. Song KC, Pratsinis SE, J. Am. Ceram. Soc., 84, 92 (2001)
  8. Song KC, Pratsinis SE, J. Colloid Interface Sci., 231(2), 289 (2000) 
  9. Song KC, Pratsinis SE, J. Mater. Res., 15, 2322 (2000)
  10. Brinker JC, Scherer GW, "Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing," Academic Press (1990)
  11. Vladimir B, Irera B, Lilian H, J. Am. Ceram. Soc., 80, 982 (1997)
  12. Davis BH, J. Am. Ceram. Soc., 67, 168 (1984)
  13. Clearfield A, J. Mater. Res., 5, 161 (1990)
  14. Tau LM, Srinivasan R, DeAngelis RJ, Prinder T, Davis BH, J. Mater. Res., 3, 561 (1988)
  15. Guinebretiere R, Dauger A, Lecomte A, Vesteghem H, J. Non-Cryst. Solids, 147, 542 (1992) 
  16. Gregg SJ, Sing KSW, "Adsorption, Surface Area and Porosity," Academic Press (1982)
  17. Yasue T, Tsuchida Y, Arai Y, Gypsum Lime, 189, 83 (1984)