화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.19, No.6, 960-966, November, 2002
Kinetics of Cellobiose Decomposition under Subcritical and Supercritical Water in Continuous Flow System
E-mail:
The effects of reaction temperature, pressure and residence time were investigated with a flow apparatus. Cellobiose decomposition kinetics and products in sub- and supercritical water were examined at temperatures from 320 to 420 ℃ at pressures from 25 to 40 MPa, and at residence times within 3 sec. Cellobiose was found to decompose via hydrolysis and pyrolysis. The yield of desired hydrolysis product, glucose, was the maximum value of 36.8% at 320 ℃, 35 MPa, but the amount of 5-(hydroxymethyl)furfural (HMF), fermentation inhibitor increased too because residence time increased in the subcritical region owing to decrease of reaction rate. Meanwhile, though the yield of glucose is low in the supercritical region, the yield of HMF decreased compared with the subcritical region; and at the minimum yield of HMF (380 ℃, 25 MPa), the yield of glucose was 21.4%. The decomposition of cellobiose followed first-order kinetics and the activation energy for the decomposition of cellobiose was 51.05 kJ/mol at 40MPa.
  1. Abatzoglou N, Bouchard J, Chornet E, Can. J. Chem. Eng., 64, 781 (1986)
  2. Bernard MK, "Kinetics and Mechanism of the Decomposition of Cellulose and Cellulose Model Compounds in Sub and Supercritical Water," Ph.D. Dissertation, Tohoku University, Sendai (1998)
  3. Fengel D, Wegener G, "Wood: Chemistry, Ultrastructure, Reactions," Walter de Gruyter, New York (1989)
  4. Kabyemela BM, Takigawa M, Adschiri T, Malaluan RM, Arai K, Ind. Eng. Chem. Res., 37(2), 357 (1998) 
  5. Mandel M, Hontz L, Nystrom J, Biotechnol. Bioeng., 17, 1471 (1974) 
  6. Michael JA, Andrew B, Carlos D, Sundaresh R, Roy CJ, ACS Symp. Ser., 329, 77 (1987)
  7. Mok WSL, Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 31, 94 (1992) 
  8. Park CY, Ryu YW, Kim C, Korean J. Chem. Eng., 18(4), 475 (2001)
  9. Park SD, Park JH, "Development of a New Biomass Hydrolysis Process by Supercritical Water," 1998-N-B102-P-07 (2000)
  10. Uhl VW, Gray JB, "Mixing, Theory and Practice," Academic Press Inc. New York, Vol. 3 (1986)