International Journal of Heat and Mass Transfer, Vol.45, No.16, 3369-3382, 2002
Hot-electron blast induced by ultrashort-pulsed lasers in layered media
Femtosecond laser heating on metals produces a blasting force in the sub-picosecond domain, which exerts on the metal lattices along with the non-equilibrium heat flow from hot electrons. Such a hot-electron blast depends on both temperature and temperature gradient in the electron gas, resulting in pronounced effects in multi-layered metal films due to discontinuous heat transfer and load transmission across the interface. This work employs the parabolic two-step model to study the effect of the hot-electron blast in multi-layered thin metal films. Dominating physical parameters are identified to characterize the ultrafast heating and deformation across the interface.