화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.45, No.17, 3631-3642, 2002
Performance of annular fins with different profiles subject to variable heat transfer coefficient
Performance of annular fins of different profiles subject to locally variable heat transfer coefficient is investigated in this paper. The performance of the fin expressed in terms of fin efficiency as a function of the ambient and fin geometry parameters has been presented in the literature in the form of curves known as the fin-efficiency curves for different types of fins. These curves, that are essential in any heat transfer textbook, have been obtained based on constant convection heat transfer coefficient. However, for cases in which the heat transfer from the fin is dominated by natural convection, the analysis of fin performance based on locally variable heat transfer coefficient would be of primer importance. The local heat transfer coefficient as a function of the local temperature has been obtained using the available correlations of natural convection for plates. Results have been obtained and presented in a series of fin-efficiency curves for annular fins of rectangular, constant heat flow area, triangular, concave parabolic and convex parabolic profiles for a wide range of radius ratios and the dimensionless parameter m based on the locally variable heat transfer coefficient. The deviation between the fin efficiency calculated based on constant heat transfer coefficient, reported in the literature, and that presently calculated based on variable heat transfer coefficient, has been estimated and presented for all fin profiles with different radius ratios.