Journal of Colloid and Interface Science, Vol.249, No.2, 405-411, 2002
The effect of the salt concentration and counterion valence on the aggregation of latex particles at the air/water interface
An experimental study on colloidal aggregation in two dimensions is presented. This study shows that a high amount of electrolyte concentration is necessary to screen the particle interactions and to induce the aggregation process. Our results indicate that the stability of the colloidal particles, with a diameter of 735 nm, increases when they are trapped at the air-water interface. The reason for this stability is the existence of long-range repulsive interactions between the external parts of the particles that are propagated at the air phase. The subphase electrolyte concentration that separates the slow aggregation rate region from the fast aggregation rate region, the critical coagulation concentration (C.C.C.), has been determined for counterions with a different valence. Two regimes can be distinguished: at low salt concentration the aggregation process becomes slower and the aggregation is reaction limited. At high ionic strength the repulsive interactions between the immersed part of the particles are very weak and the aggregation rate tends to grow. However, because of the aerial repulsive interactions, pure diffusion-limited cluster aggregation is never found.
Keywords:two-dimensional aggregation;interface;fractal dimension;kinetics;critical coagulation concentration