화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.252, No.2, 354-364, 2002
Diffusioosmosis and electroosmosis of electrolyte solutions in fibrous porous media
The steady diffusioosmotic and electroosmotic flows of an electrolyte solution in the fibrous porous medium constructed by a homogeneous array of parallel charged circular cylinders are analyzed under conditions of small Peclet and Reynolds numbers. The imposed electrolyte concentration gradient or electric field is constant and can be oriented arbitrarily with respect to the axes of the cylinders. The thickness of the electric double layers surrounding the cylinders is assumed to be small relative to the radius of the cylinders and to the gap width between two neighboring cylinders, but the polarization effect of the diffuse ions in the double layers is incorporated. Through the use of a unit cell model, the appropriate equations of conservation of the electrochemical potential energies of ionic species and the fluid momentum are solved for each cell, in which a cylinder is envisaged to be surrounded by a coaxial shell of the fluid. Analytical expressions for the diffusioosmotic and electroosmotic velocities of the bulk electrolyte solution as functions of the porosity of the ordered array of cylinders are obtained in closed form for various cases. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made. In the limit of maximum porosity, these results can be interpreted as the diffusiophoretic and electrophoretic velocities of an isolated circular cylinder caused by the imposed electrolyte concentration gradient or electric field.