Journal of Colloid and Interface Science, Vol.254, No.1, 184-189, 2002
Direct and indirect electroosmotic flow velocity measurements in microchannels
As microfluidic technologies mature, increasingly complex solutions are employed, and accurate methods for the measurement of electroosmotic flow rates are becoming increasingly important. The methodologies of both a direct method and an indirect method of flow rate measurement are presented here. The direct method involves flow visualization using trace amounts of a caged fluorescent dye. The indirect method is based on the change in current that occurs when one solution in the microchannel is replaced by another. The results of concurrent and independent measurements of electroosmotic velocities of Tris-acetate with EDTA (TAE) and Tris-borate with EDTA (TBE) at 1 x concentration in fused silica capillaries are presented. Although these buffers are commonly used in biological chemistry, these mobilities have not previously been reported. Strong agreement among data collected with both methods establishes confidence in the electroosmotic mobility values obtained and indicates that the current-based method, which requires less infrastructure than the direct method, can provide accurate flow rate measurements under these conditions. Constant electroosmotic mobilities of 4.90 x 10(-8) m(2) V-1 s(-1) for TAE and 3.10 x 10(-8) m(2) V-1 s(-1) for TBE were determined by tests in a range of electrical field strengths from 5 to 20 kV/m. A linear flow rate increase with applied field strength indicated that constant mobility and negligible Joule heating effects were present. Applicability and limitations of both the measurement methods and these buffers are discussed in the context of microfluidic applications.