Journal of Physical Chemistry A, Vol.106, No.37, 8498-8507, 2002
An optical and theoretical investigation of the ultrafast dynamics of a bisthienylethene-based photochromic switch
The switching behavior of 1,2-bis(5-phenyl-2-methylthien-3-yl)cyclopentene is studied by means of polarization selective nonlinear optical spectroscopy and time-dependent density functional theory. The combined information from the observed population and orientational dynamics together with the results of theoretical calculations show that on a subpicosecond time scale rapid mixing and relaxation of electronic states occur, before switching takes place. Such preswitching dynamics was not studied in detail in these systems before. Then, the switching process itself occurs by the formation of a C-C bond in the central cyclopentene ring with a time constant of 4.2 ps. Driven by the ring closure, the side groups of the switch molecules rotate to a nearly coplanar conformation with a time constant of about 8 ps. The switching process is completed by relaxation of the vibrationally hot ground state of the closed form of the molecule to thermal equilibrium.