Journal of Power Sources, Vol.106, No.1-2, 109-115, 2002
Microwave synthesis of catalyst spinel MnCo2O4 for alkaline fuel cell
Spinels, AB(2)O(4), are promising catalysts for the oxygen reduction reaction in alkaline fuel cells since they have no noble metals and can be prepared by rather simple methods, In this work the spinel MnCo2O4 was fabricated from decomposition of salts and subsequent heat treatment in microwave and conventional ovens. The catalytic activity of spinels for the oxygen reduction reaction was examined in alkaline conditions in a specially designed test bed. XRD, SEM, surface area, and carbon content measurements were used to analyze the prepared powders. Spinel was not detected for treatment in a microwave oven at 650 W power without carbon, but in the presence of carbon it was formed at 125 W rapidly (in a few minutes). These spinels have smaller particles and higher specific surface area and they have demonstrated higher catalytic activity for the oxygen reduction reaction than the spinels prepared in a conventional oven. The Microwave technique proved to be a favorable and fast way to prepare catalytically active spinel MnCo2O4 for alkaline fuel cells. Tested fuel cells are being adapted for transport applications in vehicles.