Journal of Power Sources, Vol.111, No.2, 221-231, 2002
Microfibrous nickel substrates and electrodes for battery system applications
The use of microfibrous nickel substrates is advantageous for increasing the surface area available for the deposition of active material and reducing the substrate weight and consequently, yields a higher specific capacity for nickel hydroxide electrodes. Porous, microfiber-based nickel substrates were produced by sintering a composite preform. The preforms, consisting of nickel fibers with diameters as small as 2 Pm and cellulose fibers, were formed using a papermaking process. The fabricated nickel electrodes that included a supporting nickel mesh in the substrate tested in a 26% KOH half-cell delivered a specific capacity of more than 250 mAh/g of the electrode weight (i.e. fibrous substrate, nickel mesh, and active material) at a 1.0 C discharge rate. An Auburn electrode without a nickel mesh tested in the same half-cell attained a higher specific capacity of 268 mAh/g at a 1.37 C discharge rate. The substrates used in these electrodes had porosities of 95-97%, and greatly improved the specific capacity of the nickel electrode. With the use of the microfibrous electrode, improved specific energies of nickel-based cell and battery designs are possible. When assembled in a nickel-hydrogen (Ni-H-2) boilerplate cell, the specific capacity of nearly 230 mAh/g was observed for the nickel electrode at a 0.5 C rate during the 127th cycle test. The results of high specific capacity and quick rise in utilization of microfibrous nickel hydroxide electrodes make these electrodes good candidates for significantly improving the energy density and performance of nickel-hydrogen cells.