Journal of Power Sources, Vol.111, No.2, 304-319, 2002
The behaviour of the coup de fouet of valve-regulated lead-acid batteries
This paper presents the results of an investigation into the initial stage of the discharge voltage response of valve-regulated lead-acid (VRLA) batteries. This region is dominated by the phenomenon known as the coup de fouet which manifests itself as a voltage dip followed by a recovery. The research focuses on two parameters found within the coup de fouet region, namely, the trough and the plateau voltage. It is found that these parameters are influenced by the operating conditions and the sate-state-of health (SoH) of the battery. The operating conditions considered are discharge rate, ambient temperature, depth of previous discharge, charge duration, and float voltage. The coup de fouet parameters corresponding to high rate discharges, as well as discharges conducted at low temperatures, have reduced magnitudes compared with those conducted at lower rates or higher temperatures. This behaviour mirrors the availability of capacity when the battery is discharged under the same operating conditions. The float voltage is found to have a direct relationship with the trough and plateau voltages, whereas an indirect relationship between charge duration and the trough and plateau voltages is observed. The influence of variations in discharge depth on the coup de fouet is more complex. For consecutive discharge depths below approximately 10% of rated capacity, the coup de fouet becomes distorted and exhibits a second voltage dip. For consecutive discharges of greater depth, this does not occur. The influence of the degradation in battery SoH due to accelerated thermal ageing, water replenishment post-accelerated thermal ageing, and field ageing is investigated. The coup de fouet parameters associated with the discharge of batteries with low SoH have a reduced magnitude compared with those associated with the discharge of batteries with a high SoH.