화학공학소재연구정보센터
Journal of Vacuum Science & Technology A, Vol.20, No.3, 823-828, 2002
Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering
ZrN and ZrSiN films were prepared in an rf sputtering apparatus that has a pair of targets facing each other (referred to as the facing target-type rf sputtering). Films were deposited on silicon wafers without bias application or substrate heating in order to examine only the effect of silicon addition to the transition metal nitride films. The contents of zirconium, nitrogen, and silicon of the films were determined with an electron probe microanalyzer. The transmission electron microscopy studies were carried out in addition to x-ray diffraction. For the high resolution transmission electron microscopy observation, the field emission type transmission electron microscope was used, which provides a point-to-point resolution of 0.1 nm. The samples were observed both parallel and perpendicular to the film surface, which were plane and cross sectional views, respectively. In order to investigate the relationship between the mechanical properties and microstructure of films, the hardness was measured by a nanoindentation system at room temperature. The load was selected to keep the impression depth below 60 nm (not more than 5% of film thickness) so that the influence from the substrate can be neglected. The hardness of the films increases with small Si additions reaching the maximum value of 35 GPa at around 3 at. % Si. The tendency to grow columnar grains was strongest around this composition. while grains became equiaxial above 5 at. % of Si. The films containing 12.8% Si, which showed the lowest hardness of 18 GPa, consist of nanocrystal grains. The presence of ZrN nanocrystals embedded in Si3N4 was not observed in the present study. The hardening mechanism due to the addition of small amounts of Si in ZrN can not be determined at this time. The grain size and residual stress can make minor contributions to the hardening. A possibility of solid solution hardening due to atomistic strain, such as nitrogen atoms at interstitial sites or other point defects is postulated and should be examined further.