화학공학소재연구정보센터
Polymer Engineering and Science, Vol.42, No.5, 899-910, 2002
Numerical investigation of continuous processes for catalytic hydrogenation of nitrile butadiene rubber
Dynamic behavior of continuous processes was numerically investigated for the catalytic hydrogenation of nitrile butadiene rubber, based on developed models, which took into account the coupling between kinetics and mass transfer. The evolution of hydrogenation reaction trajectories in both cases were analyzed. It is proposed that the coupling behavior between the catalytic hydrogenation and mass transfer was completely determined by the ability of the catalyst in activating hydrogen, carbon-carbon double bond loading level and the relative capacity of reaction to mass transfer as well as the residence time in the reactor. Four dimensionless parameters were derived to characterize these aspects. The effects of operation conditions on the hydrogenation processes were investigated. The application of the ideal flow models to non-ideal flows was in addition discussed. It is suggested that the optimal reactor for such a hydrogenation system would be a plug flow reactor with an instantaneous well-mixing component in the inlet of it, and a reasonable approach to the proposed optimal reactor should be with the flow behavior of at least three continuous stirred tank reactors in series. Further research directions are suggested.