Biotechnology Progress, Vol.18, No.5, 1095-1103, 2002
Adaptive, model-based control by the Open-Loop-Feedback-Optimal (OLFO) controller for the effective fed-batch cultivation of hybridoma cells
Although fed-batch suspension culture of animal cells continues to be of industrial importance for the large scale production of pharmaceutical products, existing control concepts are still insufficient. Changes in cell metabolism during cultivation and between similar cultivations, the complexity of the cell metabolism, and the lack of on-line state variables restrict the transfer of available control strategies established in bioprocess engineering. A process control strategy designed to achieve optimized process control must account for all these difficulties and fit sophisticated requirements toward adaptability and flexibility. The combination of a fed-batch process and an Open-Loop-Feedback-Optimal (OLFO) control provides a new approach for cell culture process control that couples an efficient cultivation concept to a capable process control strategy. The application of an adaptive, model-based OLFO controller to a hybridoma cultivation and experimental results are presented.