화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.34, No.6, 675-682, December, 1996
Polyimide Hollow Fiber 막을 이용한 CH4-CO2 혼합기체의 분리 특성에 관한 연구
A Study on the Separation Characteristics of CH4-CO2 Mixed Gas by Polyimide Hollow Fiber Membrane
초록
본 연구는 polyimide 실관형 막분리 시스템을 이용하여 CO2, CH4의 순수 및 혼합기체에 대한 분리 투과 특성을 실험하였다. 실험 조건은 공급 유량 0-15ι/min, 시스템 온도 30-70℃, 적용 압력 0-20bar의 범위에서 행하였다. 본 실험에 사용된 막 소재는 유리상 고분자인 polyimide계로 수착특성은 dual-mode sorption 모델로 기술할 수 있었고, 투과도는 순수기체일 경우, partial immo- bilized dual-mode sorption 모델로 잘 설명될 수 있었으나, 혼합기체의 경우, CO2 기체의 비이상성 등으로 약간의 편차를 나타내었다. 두 기체의 이상분리인자(α*=PCO2/PCH4)값은 공급압력이 증가함에 따라 약간의 감소를 나타낸 반면, 온도 증가시 훨씬 큰 감소율을 나타내었다. 투과 추진력으로서 압력 대신 퓨가시티를 이용하여 비이상성에 대한 편차를 관측하였는데, 본 실험 조건 범위(0-20bar)에서 그 차이는 5%이내였다.
This study was primarily to find the separation characteristics of CH4-CO2 mixed gas, using polyimide hollow fiber membrane. For the purpose, the experiments on the sorption-permeation charcteristics of CO2, CH4 pure gases and mixed ones respectively were made. The experimental conditions were as follows : feed flow rate 0-15 l/min, system temperature 30-70℃, and applied pressure 0-20 bar. The membrane materials used in the experiments were a kind of polyimide, which is glassy polymer. The pure gases permeability of CO2 and CH4 could be fully explained by the partial immobilized dual-mode sorption model, and in case of mixed gases, some deviation by the nonidality of CO2 gas was exposed. Idal separation factor(α*=PCO2/PCH4), the permeability ratio of the two gases, was a little decreased according to the increase of feed pressure, while in much larger scale decreased with the increase of system temperature, and when the deviation to the nonideality was observed, with fugacity instead of pressure as permeation driving force, the difference was found within 5% in the range of this experimental condition(0-20 bar).
  1. Spillman RW, Chem. Eng. Prog., Jan., 41 (1989)
  2. Russel FG, Hydrocarb. Process., Aug., 55 (1983)
  3. Ward WJ, "Membrane Gas Separation-Why and How," 389 (1986)
  4. Rousseau RW, "Handbook of Sep. Pro. Tech," 863 (1987)
  5. Simonet RA, Desalination, 53, 289 (1985) 
  6. Rautenbach R, Ehresmann HE, AIChE Symp. Ser., 85(272), 49 (1988)
  7. Brien O, U.S. Patent, 4,681,612 (1987)
  8. Croskell CA, U.S. Patent, 4,518,399 (1987)
  9. Rautenbach R, Ehresmann HE, Sep. Gas, 227 (1990)
  10. Winston HWS, Sirkar KK, "Memb. Handbook," 18 (1992)
  11. Kim TH, Koros WJ, Husk GR, J. Membr. Sci., 37, 45 (1988) 
  12. Koros WJ, Chern RT, Hopfenberg HB, J. Polym. Sci. B: Polym. Phys., 19, 1513 (1981)
  13. Lee MS, M.S. Thesis, Yonsei Univ., Seoul, Korea (1992)
  14. Assink RA, J. Polym. Sci. B: Polym. Phys., 13, 1665 (1975)
  15. Chan AH, Paul DR, Polym. Eng. Sci., 20(1), 87 (1980) 
  16. Koros WJ, Paul DR, J. Polym. Sci. B: Polym. Phys., 19, 1655 (1984)
  17. Chern RT, Koros WJ, Hopfenberg HB, J. Polym. Sci. B: Polym. Phys., 21, 753 (1983)
  18. Chern RT, Koros WJ, Stannett VT, J. Polym. Sci. B: Polym. Phys., 22, 1061 (1984)
  19. Chern RT, Ph.D. Dissertation, North Carolina State Univ., U.S.A. (1983)
  20. Yang RT, "Gas Separation by Adsorption Processes," Boston, Butterworths (1987)
  21. Paul DR, Koros WJ, J. Polym. Sci. B: Polym. Phys., 14, 675 (1976)
  22. Toi K, Polym. Eng. Sci., 20(1), 30 (1980) 
  23. Sada E, Kumazawa H, Xu P, J. Membr. Sci., 39, 89 (1988) 
  24. Story BJ, Koros WJ, J. Membr. Sci., 67, 191 (1992) 
  25. Toi K, Morel G, Paul DR, J. Appl. Polym. Sci., 27, 2997 (1982) 
  26. Koros WJ, Paul DR, Rocha AA, J. Polym. Sci. B: Polym. Phys., 14, 687 (1976)
  27. Barric JA, Williams MJ, Munday K, Polym. Eng. Sci., 20(1), 20 (1980) 
  28. Hwang SU, M.S. Thesis, Korea Univ., Seoul, Korea (1995)
  29. Ahn JS, Ph.D. Dissertation, Yonsei Univ., Seoul, Korea (1994)