화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.1, 122-128, February, 2003
폐윤활유 연속 주입식 열분해 반응기에서 생성되는 탄소 침적체의 특성
Characteristics of Deposited Carbon on the Pyrolysis Reactor Wall with Continuous Feeding of Waste Lubricating Oil
E-mail:
초록
열분해 공정은 석유화학 제품의 폐기물을 원료로 회수할 수 있는 친환경적이고 경제적인 공정이다. 그러나 열분해 공정 시 반응기 벽면에 발생하는 탄소침적 현상은 열분해 공정의 단점으로서 반응기 내 열전달 저하 및 급속의 산화와 부식을 유발하여 반응의 효율을 떨어뜨리게 된다. 그러므로 본 연구에서는 윤활기유, 윤활유, 그리고 폐윤활유 시료를 이용하여 연속주입식 열분해 반응기에서 생성되는 탄소 침적현상에 대하여 연구하였다. 특히 무기물이 탄소침적에 미치는 영향, 반응기 재질, 조업조건(온도)의 변화에 의한 탄소침적 생성에 관한 연구를 하였다. Zn, Ca은 탄소침적을 증가시켰으며 황 성분은 탄소침적을 억제하는 효과가 있었다. 한편 Fe 재질의 반응기는 철의 산화로 인하여 탄소침적이 증가하는 경향을 나타낸다.
Pyrolysis is an environmental and economical process, through which fuel oil may be obtained and waste polymers may be recycled. However, the carbon deposition, which forms to depths of several mm, reduces heat transfer and limits operation time and decreases the reactor efficiency by way of corrosion and oxidation of the reactor. In this study, experiments were focused on examining how the carbon deposition is generated in the continuous pyrolysis reaction by feeding base lubricating oil, lubricating oil and waste lubricating oil. Moreover, effects of minerals, reaction temperature, additives and feeding rates on carbon deposition were examined. Zinc and calcium increase the coke formation, but sulfur additives in feed suppress the carbon deposit. Iron material in the pyrolysis reactor shows that coke formation increases with iron oxidation.
  1. Ghim YS, Cho SH, Son JE, HWAHAK KONGHAK, 30(3), 261 (1992)
  2. Scheirs J, Polymer Recycling, John Wiley & Sons, New York (1998)
  3. Brandrup J, Recycling and Recovery of Plastics, Hanser Publishers, Seoul (1996)
  4. Albright LF, Crynes BL, Corcoran WH, Pyrolysis: Theory and Industrial Practice, Academic Press, New York (1983)
  5. Williams EA, Williams PT, J. Chem. Technol. Biotechnol., 70(1), 9 (1997) 
  6. Bockhorn H, Hornung A, Hornung U, J. Anal. Appl. Pyrolysis, 46(1), 1 (1998) 
  7. Kissin YV, J. Catal., 146(2), 358 (1994) 
  8. Kissin YV, J. Catal., 163(1), 50 (1996) 
  9. Albright LF, Marek JC, Ind. Eng. Chem. Res., 27, 755 (1988) 
  10. Crynes BL, Crynes LL, Ind. Eng. Chem. Res., 26, 2138 (1987)
  11. Poutsma ML, J. Anal. Appl. Pyrolysis, 54, 5 (2000) 
  12. Kim SS, Park CJ, Kim SH, HWAHAK KONGHAK, 39(6), 757 (2001)
  13. Kim YS, Kim YS, Jeong SU, Yoon WL, Kim SH, J. Korean Ind. Eng. Chem., 12(1), 12 (2001)
  14. King PH, Integrated Solid Waste Management, McGraw-Hill, New York (1993)
  15. Zhang MJ, Chen BJ, Shen SD, Chen SY, Fuel, 76(5), 415 (1997) 
  16. Choi JH, Synthetic Lubricant, Lubricating Additives, Poolngil, Seoul (2000)
  17. Zou R, "Fundamentals of Pyrolysis on Petrochemistry and Technology," CRC Press, London (1993)
  18. Mcintryre AD, Papic MM, Can. J. Chem. Eng., 52(1), 263 (1974)
  19. Yoon WL, Park JS, Jung H, Lee HT, Lee DK, Fuel, 78(7), 809 (1999) 
  20. Price JB, Bennett MJ, Oxidation of an Ethylene Steam Cracker Pyrolysis Tube Deposit in Water Vapor and Its Enhancement by Inorganic Catlaysists, Coke Formation on Metal Surfaces, ACS Symposium Series, New York (1982)
  21. Pradip D, Surendra P, Deepak K, Ind. Eng. Chem. Res., 31(9), 2251 (1992) 
  22. Kumar S, Ind. Eng. Chem. Res., 38(4), 1364 (1999)