화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.35, No.2, 237-242, April, 1997
헤테로폴리산과 고분자가 혼성된 필름촉매의 활성에 용매가 미치는 영향
Effect of Solvent on the Catalytic Activity of Heteropoly Acid-Blended Polymer Film Catalyst
초록
본 연구에서는 공통용매(dimethylformamide) 혹은 혼합용매(메탄올-클로로포름)를 사용하여 12-몰리브도인산과 고분자(polysulfone 혹은 polyphenylene oxide)가 혼성된 분리막 형태의 필름 촉매를 제조하였으며 에탄올 및 프로판올 전화 반응을 수행하여 필름촉매 제조 과정에서 용매의 선택이 필름촉매의 활성에 미치는 영향을 살펴보았다. 염기성 공통용매에 의해 제조된 필름촉매는 모산 촉매보다 낮은 산특성과 증가된 산화환원특성을 보였으며, 혼합용매에 의해 제조된 필름촉매는 산특성이 유지되거나 억제되며, 산화환원특성은 역시 증가하였다. 산화환원특성 증가는 혼성에 의한 촉매의 고른 분산에 기인하였다. 산특성의 변화는 용매자체, 고분자 종류 및 상이한 혼성형태(물리적 혹은 물리화학적 혼성)에 크게 의존하였다. 따라서 선택적 산화환원반응용 촉매에 부합되도록 염기성 공통용매 혹은 혼합용매를 사용하여 헤테로폴리산과 고분자가 혼성된 필름촉매를 설계할 수 있다.
Membrane-lime 12-molybdophosphoric acid-blended polymer(polysulfone or polyphenylene oxide) film catalysts were prepared by blending two materials using common solvent(dimethyformamide) or using mixed solvent(methanol-chloroform), and the effects of solvent on the catalytic activities of the film catalysts were examined for ethanol conversion and 2-propanol conversion reaction. The film catalyst prepared by using common solvent showed a lower acidic activity and a higher redox activity than 12-molybdophosphoric acid, whereas the film catalyst prepared by using mixed solvent showed a lower or similar acidic function and a higher redox function than 12-molybdophosphoric acid. It was found that the enhanced redox activity of the film catalysts was mainly due to the fine dispersion of the catalyst through polymer films. The acidic function of the film catalysts was strongly affected by solvent, polymer material, and blending patter(physical blending of physicochemical blending). It is concluded that heteropoly acid-blended polymer film catalyst can be designated to meet he need for the selective oxidation reaction by using basic common solvent or by using mixed solvent.
  1. Okuhara T, Kasai A, Hayakawa N, Yoneda Y, Misono M, J. Catal., 83, 121 (1983) 
  2. Mizuno N, Watanabe T, Misono M, J. Phys. Chem., 89, 80 (1985) 
  3. Tanaka KI, Ozaki A, J. Catal., 8, 1 (1967) 
  4. Lee WY, HWAHAK KONGHAK, 17(5), 317 (1979)
  5. Misono M, Moroka Y, Kimura S, "Future Opportunities in Catalytic and Separation Technology," Elsevier, Sci. Pub., Amsterdam (1990)
  6. Misono M, Catal. Rev.-Sci. Eng., 29, 269 (1987)
  7. Misono M, Mater. Chem. Phys., 17, 103 (1987) 
  8. Mizuno N, Watanabe T, Misono M, J. Phys. Chem., 94, 890 (1990) 
  9. Okuhara T, Arai T, Ichiki T, Lee KY, Misono M, J. Mol. Catal., 55, 293 (1989) 
  10. Saito Y, Cook PN, Niyama H, Echigoya E, J. Catal., 95, 49 (1985) 
  11. Nomiya K, Murasaki H, Makoto M, Polyhydron., 5, 1031 (1986) 
  12. Pozniczek J, Kulszewicz-Bajer I, Zagorska M, Kruczala K, Dyrek K, Bielanski A, Pron A, J. Catal., 132, 311 (1991) 
  13. Song IK, Lee WY, Kim JJ, Polym.(Korea), 16(2), 209 (1992)
  14. Song IK, Lee WY, Kim JJ, HWAHAK KONGHAK, 31(1), 127 (1993)
  15. Song IK, Lee JK, Song JC, Lee WY, J. Korean Ind. Eng. Chem., 5(3), 431 (1994)
  16. Song IK, Lee JK, Lee WY, J. Korean Ind. Eng. Chem., 5(5), 819 (1994)
  17. Song IK, Lee JK, Lee WY, Appl. Catal. A: Gen., 119(1), 107 (1994) 
  18. Lee JK, Song IK, Lee WY, Catal. Today, 25(3-4), 345 (1995) 
  19. Lee JK, Song IK, Lee WY, Catal. Lett., 29(1-2), 241 (1994) 
  20. Lee JK, Song IK, Lee WY, Kim JJ, J. Mol. Catal. A-Chem., 104, 311 (1996)