Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.1, 41-47, February, 2003
양극산화 표면처리에 따른 활성탄소섬유의 표면 및 중금속 흡착 특성에 관한 연구
Studies on Anodic Oxidation Treatment of Surface and Heavy Metal Adsorption Properties of Activated Carbon Fibers
E-mail:
초록
본 연구에서는 활성탄소섬유의 양극산화 표면처리에 의한 Cr(VI), Cu(II), 그리고 Ni(II) 이온의 단일 중금속 용액에 대한 흡착 특성을 고찰하였다. 산성과 염기성 전해질로 각각 10 wt%의 인산(A-ACFs)과 암모니아(B-ACFs)를 사용하였다. 활성탄소섬유의 표면 특성은 pH, 산도-염기도, FT-IR, 그리고 XPS를 사용하였으며, 비표면적과 기공 구조는 77 K에서 N2 등온 흡착 방법으로 조사하였다. 또한, ACFs의 중금속 흡착 속도는 UV spectrometer와 ICP로 측정하였다. 본 실험 결과에 따르면, 양극산화에 의한 산성 관능기의 증가로 산도 값이 증가하였고, 산성 관능기에 의해 기공이 막힘으로써 비표면적이 오히려 감소한 것으로 사료된다. 양극산화로 표면처리된 ACFs의 흡착량은 B-ACFs > A-ACFs > pure-ACFs의 순서로 증가되었다. 이는 ACFs의 중금속 흡착 거동이 기공구조가 잘 발달된 상태에서 표면 관능기 특성과 구조의 특성의 영향을 받는 것으로 사료된다.
In this work, the effect of anodic oxidation treatment on activated carbon fibers (ACFs) was studied in conjunction of Cr(VI), Cu(II), and Ni(II) ion adsorption behaviors. 10 wt% phosphoric acid (A-ACFs) and sodium hydroxide (B-ACFs) were used for acidic and basic electrolytes, respectively. Surface properties of ACFs were determined by pH, acid-base values, FT-IR, and XPS. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The heavy metal adsorption rates onto ACFs were measured by UV spectrometer and ICP. As a result, the anodic treatment led to an increase in the amount of total acidity due to the increased acidic functional groups; in spite of decreased specific surface area, which resulted from pore blocking by the functional groups. The adsorption amount of the anodized ACFs was improved in the following order: B-ACFs > A-ACFs > pure-ACFs. It was found that the heavy metal adsorption behaviors of ACFs were significantly influenced by the surface functional properties and microstructural properties in the well-developed pore structures of ACFs.
- Noll KE, Gounaris V, Hou WS, Adsorption Technology for Air Water Pollution Control, Lewis, Michigan (1992)
- Cusumano JA, Thomas JM, Zamaraev KI, Perspectives in Catalysis, Blackwell, Oxford (1992)
- Park SJ, Jang YS, J. Colloid Interface Sci., 249(2), 458 (2002)
- Donnet JB, Bansal RC, Carbon Fibers, ed. M. Lewin, 5, 259, Marcel Dekker, New York (1990)
- Donnet JB, Qin RY, Park SJ, Ryu SK, Rhee BS, J. Mater. Sci., 28, 2950 (1993)
- Park SJ, Park BJ, Ryu SK, Carbon, 37, 1223 (1999)
- Suzuki M, Carbon, 32, 577 (1994)
- Jayson GG, Lawless TA, J. Colloid Interface Sci., 86, 397 (1982)
- Park SJ, Brendle M, J. Colloid Interface Sci., 188(2), 336 (1997)
- Polovina M, Babic B, Kaluderovic B, Dekanski A, Carbon, 35, 1047 (1997)
- Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar FJ, Rivera-Utrilla J, Carbon, 36, 145 (1998)
- Ahmadpour A, King BA, Do DD, Ind. Eng. Chem. Res., 37(4), 1329 (1998)
- Shim JW, Park SJ, Ryu SK, Carbon, 39, 1635 (2001)
- Tessmer CH, Vidic RD, Uranwski LJ, Environ. Sci. Technol., 31, 1872 (1997)
- Hong LI, Moshonov A, Muzzy JD, Polym. Compos., 12, 191 (1991)
- Drzal LT, Madhukar M, J. Mater. Sci., 28, 569 (1993)
- Ehrburger P, Donnet JB, Handbook of Compositestrong Fibers, Ed. W. Watt and B.V. Perov, 577, Elsevier, Amsterdam (1985)
- Pittman CU, Jiang W, Yue ZR, Leon CA, Leon Y, Carbon, 37, 85 (1999)
- Boehm HP, Adv. Catal., 16, 179 (1966)
- Brumauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- deBoer JH, Linsen BG, Plas T, VanZonder GJ, J. Catal., 4, 649 (1965)
- Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
- Park SJ, Interfacial Forces and Field: Theory and Applications, ed. J.P. Hsu, Marcel Dekker, New York (1999)
- Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
- Zielke U, Httinger KJ, Hoffman WP, Carbon, 34, 983 (1996)
- Ende D, Kessler W, Oelkrug D, Fuchs R, Electrochim. Acta, 38, 2577 (1993)
- Utrilla JR, Toledo IB, Garcia MA, Castilla CM, Carbon, 32, 93 (1994)
- Carrott PJM, Ribeiro MML, Nabais JMV, Ramalho JPP, Carbon, 35, 403 (1997)