화학공학소재연구정보센터
Polymer, Vol.44, No.4, 1247-1257, 2003
Deformation behavior of styrene-block-butadiene-block-styrene triblock copolymers having different morphologies
Deformation behavior of styrene-block-butadiene-block-styrene (SBS) triblock copolymers having different morphologies was investigated. Due to the combination of different methods which provide information on different deformation levels (macroscopic, microscopic and molecular) complex deformation mechanisms for each type of SBS block copolymer (including glassy-rubber alternating lamellae, rubber cylinders in glassy matrix and hard domains in soft matrix morphology) could be revealed. In combination with tensile tests, Fourier transform infrared (FTIR) spectroscopy was successfully applied to study the change of orientation in individual phases using the absorption bands at 1493 and 966 cm(-1) for polystyrene (PS) and polybutadiene (PB) phases, respectively. For all the block copolymers investigated the PB phase always oriented stronger than the PS phase because of its lower Young's modulus. However, differences in orientation in both phases were influenced by an appropriate stress distribution within the specimens during deformation, which, in fact, depends on the morphology of the polymers. Additionally, atomic force microscopy revealed local morphological changes during uniaxial stretching, which, in fact, depend on the arrangement of the structural units.