Rheologica Acta, Vol.42, No.1-2, 47-55, 2003
A thermodynamic approach to the rheology of highly interactive filler-polymer mixtures. Part II. Comparison with polystyrene/nanosilica mixtures
The dynamic properties as a function of frequency and strain amplitude, steady-state viscosity as a function of shear rate, and transient shear stresses at startup and cessation of shear flow of polystyrene (PS)/fumed silica mixtures of various concentrations were investigated. An abrupt change in the viscoelastic properties was noticed at a concentration above 1% by volume. Observations by means of scanning electron microscopy (SEM) indicate the presence of a three-dimensional network through the bridging of filler particles by the adsorbed polymer. The viscoelastic behavior is simulated utilizing a theory proposed in Part I (Havet and Isayev 2001) based on a double network created by the entangled polymer matrix and the adsorbed polymer with filler concentration taken into account through the bridging density of polymer-filler interactions and a hydrodynamic reinforcement. The steps taken for determining the model parameters required to carry out the simulation are described. The major features of the rheological behavior of highly interactive polymer-filler mixtures are captured qualitatively and in some cases, quantitatively predicted.
Keywords:rheology;nanoparticles;theory;experiment;polymer;mixtures;adsorbed layer;fumed silica;dynamic properties;flow curve