화학공학소재연구정보센터
AIChE Journal, Vol.49, No.2, 402-410, 2003
Model for temperature profiles in large diameter electrochromatography columns
Scale-up of electrochromatographic separations has been problematic due to electrically induced heating. A two-dimensional transient temperature model for electrochromatography was developed, which accounts for physical properties of the stationary and mobile phase, and the column wall. The model also accounts for both the temperature effect on the electrical conductivity and a nonuniform, radially variant current density. This model was compared to experimental data from two electrochromatography systems with different cylindrical-column dimensions, packing materials, and operating conditions. In all cases, the model predicts the temperature to within 3degreesC of the actual temperature, both for column heatup and cooldown. Separation of a mixture of model proteins on the 3.81-cm-ID scale was used as the basis for scale-up calculations. The model identifies equipment parameters that control heating characteristics and can be scaled up to process 75 mL of sample per run.