화학공학소재연구정보센터
Color Research and Application, Vol.28, No.2, 96-102, 2003
Whiteness perception under different types of fluorescent lamps
The effects of correlated color temperature and the chromaticity of light sources on the perception of surface whiteness were investigated. For the experiment, a Munsell N9.25 chip and 11 nearly white chips (V = 9.25, Munsell chroma less than or equal to 1.0) were selected. The interval scale of the whiteness of these chips was determined from the results of pair comparisons under eight different fluorescent lamps with correlated color temperatures from 2800 to 6700 K. The Munsell 3PB, 10PB, 7P, and N chips gained high scores under 6700 K illumination, whereas the 3PB, 513, 7BG, and 9G chips scored higher under the 2800 K illumination. The 12 chips were divided into two groups. In one group, the interval scale from the bottom was found to increase as the correlated color temperature increased, whereas in the other group, it decreased with the temperature. The Munsell 3PB/9.25/1.0 chips fell into the latter group but consistently exhibited the highest or at least high-order scores for all the illuminations examined. In those cases in which the correlated color temperature was held constant, the chromaticity of the light source was found to have no significant effect on the whiteness interval scale. A high correlation was identified between the interval scale of the whiteness and the two metrics, the metric chroma of CIELAB, and CIECAM97s chroma C. (C) 2003 Wiley Periodicals.