화학공학소재연구정보센터
Combustion and Flame, Vol.132, No.1-2, 219-239, 2003
Two-stage ignition in HCCI combustion and HCCI control by fuels and additives
A Rapid Compression Machine (RCM) has been used to study the effects of fuel structure and additives on the Homogeneous Charge Compression Ignition (HCCI) of pure hydrocarbon fuels and mixtures under well-determined conditions. Such information is needed for understanding ignition delays and burning rates in HCCI engines, and "knock" in spark-ignition engines. It is also valuable for validating basic chemical kinetic models of hydrocarbon oxidation. The pure fuels used in the study include: paraffins (n-heptane, iso-octane), cyclic paraffins (cyclohexane, methylcyclohexane), olefins (1-heptene, 2-heptene, 3-heptene), cyclic olefins (cyclohexene, 1,3-cyclohexadiene), and an aromatic hydrocarbon (toluene). The additives were 2-ethyl-hexyl-nitrate and di-tertiary-butyl-peroxide. It was found that fuels which contained the structure -CH2-CH2-CH2- showed two-stage ignition with relatively short ignition delays and that the ignition delay depended strongly on the energy released during the first-stage. For primary reference fuel mixtures (n-heptane + iso-octane), the ignition delay depended only on the molar ratio of n-heptane to oxygen and was independent of the octane number (percent iso-octane). On the other hand, the burn rate depended on both these parameters, which uniquely determine the equivalence ratio. When additives were included in the air/fuel mixtures, the ignition delay was reduced but the burn rate was not affected. These results indicate that for HCCI combustion, the ignition delay and the burn rate can be independently controlled using various fuel mixtures and additives. (C) 2003 The Combustion Institute. All rights reserved.