화학공학소재연구정보센터
Desalination, Vol.154, No.1, 1-8, 2003
Study of the structure and transport of asymmetric polyamide membranes for reverse osmosis using the electron spin resonance (ESR) method
The electron spin resonance technique (ESR) was used to study the structure and transport of asymmetric aromatic polyamide membranes. TEMPO (2,2,6,6-tetramethyl-1-piperridinyloxy free radical) was used as a spin probe that was brought into the membrane either by (a) immersion of the membranes in aqueous TEMPO solutions, (b) reverse osmosis (RO) experiments with feed solutions involving TEMPO or (c) blending TEMPO in casting solutions. The membranes were further tested for the separation of sodium chloride and TEMPO from water by RO. It was concluded that aromatic polyamide membranes contain water channels in the polymer matrix like cellulose acetate membranes. The presence of such water channels allows aromatic polyamide membranes to be used as RO membranes. The diffusion of organic solutes through the water channels seems much slower in aromatic polyamide membranes than in cellular acetate membranes, which probably causes a higher separation of organic solutes by aromatic polyamide membranes than cellulose acetate membranes. A comparison was made with other RO membranes (cellulose acetate, CA) and ultrafiltration membranes (polyethersulphone, PES). It was observed that the ESR technique can be used to study the structure of UF and RO membranes. The presence of water channels in the polymer matrix seems indispensable for the RO membrane.